Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Biol Evol ; 33(4): 1029-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26739880

RESUMO

Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination.


Assuntos
Visão de Cores/genética , Evolução Molecular , Opsinas/genética , Primatas/genética , Animais , Humanos , Gambás/genética , Gambás/fisiologia , Filogenia , Primatas/fisiologia , Opsinas de Bastonetes/genética , Raios Ultravioleta
2.
Mol Phylogenet Evol ; 113: 139-149, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28545973

RESUMO

The mountains of Borneo are well known for their high endemicity and historical role in preserving Southeast Asian rainforest biodiversity, but the diversification of populations inhabiting these mountains is poorly studied. Here we examine the genetic structure of 12 Bornean montane passerines by comparing complete mtDNA ND2 gene sequences of populations spanning the island. Maximum likelihood and Bayesian phylogenetic trees and haplotype networks are examined for common patterns that might signal important historical events or boundaries to dispersal. Morphological and ecological characteristics of each species are also examined using phylogenetic generalized least-squares (PGLS) for correlation with population structure. Populations in only four of the 12 species are subdivided into distinct clades or haplotype groups. Although this subdivision occurred at about the same time in each species (ca. 0.6-0.7Ma), the spatial positioning of the genetic break differs among the species. In two species, northeastern populations are genetically divergent from populations elsewhere on the island. In the other two species, populations in the main Bornean mountain chain, including the northeast, are distinct from those on two isolated peaks in northwestern Borneo. We suggest different historical forces played a role in shaping these two distributions, despite commonality in timing. PGLS analysis showed that only a single characteristic-hand-wing index-is correlated with population structure. Birds with longer wings, and hence potentially more dispersal power, have less population structure. To understand historical forces influencing montane population structure on Borneo, future studies must compare populations across the entirety of Sundaland.


Assuntos
Biodiversidade , Evolução Biológica , Ecologia , Passeriformes/fisiologia , Animais , Teorema de Bayes , Bornéu , Haplótipos/genética , Análise dos Mínimos Quadrados , Filogenia , Filogeografia , Especificidade da Espécie
3.
BMC Genomics ; 16: 222, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887664

RESUMO

BACKGROUND: Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing. RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma. CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.


Assuntos
Genoma Mitocondrial , Macaca fascicularis/genética , Filogenia , Animais , Ásia , Sudeste Asiático , Análise de Sequência de DNA
4.
Parasit Vectors ; 17(1): 135, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491403

RESUMO

BACKGROUND: The geographic distribution and host-parasite interaction networks of Sarcocystis spp. in small mammals in eastern Asia remain incompletely known. METHODS: Experimental infections, morphological and molecular characterizations were used for discrimination of a new Sarcocystis species isolated from colubrid snakes and small mammals collected in Thailand, Borneo and China. RESULTS: We identified a new species, Sarcocystis muricoelognathis sp. nov., that features a relatively wide geographic distribution and infects both commensal and forest-inhabiting intermediate hosts. Sarcocystis sporocysts collected from rat snakes (Coelognathus radiatus, C. flavolineatus) in Thailand induced development of sarcocysts in experimental SD rats showing a type 10a cyst wall ultrastructure that was identical with those found in Rattus norvegicus from China and the forest rat Maxomys whiteheadi in Borneo. Its cystozoites had equal sizes in all intermediate hosts and locations, while sporocysts and cystozoites were distinct from other Sarcocystis species. Partial 28S rRNA sequences of S. muricoelognathis from M. whiteheadi were largely identical to those from R. norvegicus in China but distinct from newly sequenced Sarcocystis zuoi. The phylogeny of the nuclear 18S rRNA gene placed S. muricoelognathis within the so-called S. zuoi complex, including Sarcocystis attenuati, S. kani, S. scandentiborneensis and S. zuoi, while the latter clustered with the new species. However, the phylogeny of the ITS1-region confirmed the distinction between S. muricoelognathis and S. zuoi. Moreover, all three gene trees suggested that an isolate previously addressed as S. zuoi from Thailand (KU341120) is conspecific with S. muricoelognathis. Partial mitochondrial cox1 sequences of S. muricoelognathis were almost identical with those from other members of the group suggesting a shared, recent ancestry. Additionally, we isolated two partial 28S rRNA Sarcocystis sequences from Low's squirrel Sundasciurus lowii that clustered with those of S. scandentiborneensis from treeshews. CONCLUSIONS: Our results provide strong evidence of broad geographic distributions of rodent-associated Sarcocystis and host shifts between commensal and forest small mammal species, even if the known host associations remain likely only snapshots of the true associations.


Assuntos
Doenças dos Roedores , Sarcocystis , Sarcocistose , Ratos , Animais , Sarcocistose/veterinária , Sarcocistose/parasitologia , RNA Ribossômico 28S/genética , Reação em Cadeia da Polimerase , Ratos Sprague-Dawley , RNA Ribossômico 18S/genética , Filogenia , Sciuridae , Murinae , Doenças dos Roedores/parasitologia
5.
Oecologia ; 172(2): 307-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23108423

RESUMO

Patterns of host-parasite association are poorly understood in tropical forests. While we typically observe only snapshots of the diverse assemblages and interactions under variable conditions, there is a desire to make inferences about prevalence and host-specificity patterns. We studied the interaction of ticks with non-volant small mammals in forests of Borneo. We inferred the probability of species interactions from individual-level data in a multi-level Bayesian model that incorporated environmental covariates and advanced estimates for rarely observed species through model averaging. We estimated the likelihood of observing particular interaction frequencies under field conditions and a scenario of exhaustive sampling and examined the consequences for inferring host specificity. We recorded a total of 13 different tick species belonging to the five genera Amblyomma, Dermacentor, Haemaphysalis, Ixodes, and Rhipicephalus from a total of 37 different host species (Rodentia, Scandentia, Carnivora, Soricidae) on 237 out of 1,444 host individuals. Infestation probabilities revealed most variation across host species but less variation across tick species with three common rat and two tree shrew species being most heavily infested. Host species identity explained ca. 75 % of the variation in infestation probability and another 8-10 % was explained by local host abundance. Host traits and site-specific attributes had little explanatory power. Host specificity was estimated to be similarly low for all tick species, which were all likely to infest 34-37 host species if exhaustively sampled. By taking into consideration the hierarchical organization of individual interactions that may take place under variable conditions and that shape host-parasite networks, we can discern uncertainty and sampling bias from true interaction frequencies, whereas network attributes derived from observed values may lead to highly misleading results. Multi-level approaches may help to move this field towards inferential approaches for understanding mechanisms that shape the strength and dynamics in ecological networks.


Assuntos
Especificidade de Hospedeiro , Mamíferos/parasitologia , Modelos Teóricos , Carrapatos , Animais , Teorema de Bayes , Bornéu , Interações Hospedeiro-Parasita , Ixodidae/fisiologia , Probabilidade , Roedores/parasitologia , Infestações por Carrapato/epidemiologia , Árvores
6.
Parasitol Res ; 111(2): 909-19, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526293

RESUMO

Domestic dogs, Canis lupus, have been one of the longest companions of humans and have introduced their own menagerie of parasites and pathogens into this relationship. Here, we investigate the parasitic load of 212 domestic dogs with fleas (Siphonaptera) chewing lice (Phthiraptera), and ticks (Acarina) along a gradient from rural areas with near-natural forest cover to suburban areas in Northern Borneo (Sabah, Malaysia). We used a spatially-explicit hierarchical Bayesian model that allowed us to impute missing data and to consider spatial structure in modelling dog infestation probability and parasite density. We collected a total of 1,968 fleas of two species, Ctenocephalides orientis and Ctenocephalides felis felis, from 195 dogs (prevalence, 92 %). Flea density was higher on dogs residing in houses made of bamboo or corrugated metal (increase of 40 % from the average) compared to timber or stone/compound houses. Host-dependent and landscape-level environmental variables and spatial structure only had a weak explanatory power. We found adults of the invasive chewing louse Heterodoxus spiniger on 42 dogs (20 %). The effect of housing conditions was opposite to those for fleas; lice were only found on dogs residing in stone or timber houses. We found ticks of the species Rhipicephalus sanguineus as well as Haemaphysalis bispinosa gp., Haemaphysalis cornigera, Haemaphysalis koenigsbergi, and Haemaphysalis semermis on 36 dogs (17 %). The most common tick species was R. sanguineus, recorded from 23 dogs. Tick infestations were highest on dogs using both plantation and forest areas (282 % increase in overall tick density of dogs using all habitat types). The infestation probability of dogs with lice and ticks decreased with elevation, most infestations occurred below 800 m above sea level. However, the density of lice and ticks revealed no spatial structure; infestation probability of dogs with these two groups revealed considerable autocorrelation. Our study shows that environmental conditions on the house level appeared to be more influential on flea and lice density whereas tick density was also influenced by habitat use. Infestation of dogs with Haemaphysalis ticks identified an important link between dogs and forest wildlife for potential pathogen transmission.


Assuntos
Doenças do Cão/epidemiologia , Ectoparasitoses/veterinária , Animais , Bornéu , Demografia , Cães , Ectoparasitoses/epidemiologia , Meio Ambiente , Ftirápteros , População Rural , Sifonápteros , Carrapatos
7.
Parasitol Int ; 77: 102128, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32330535

RESUMO

The whipworm Trichuris muris is known to be associated with various rodent species in the northern hemisphere, but the species identity of whipworm infecting rodents in the Oriental region remains largely unknown. We collected Trichuris of Muridae rodents in mainland and insular Southeast Asia between 2008 and 2015 and used molecular and morphological approaches to identify the systematic position of new specimens. We discovered two new species that were clearly distinct from T. muris, both in terms of molecular phylogenetic clustering and morphological features, with one species found in Thailand and another one in Borneo. We named the new species from Thailand as Trichuris cossoni and the species from Borneo as Trichuris arrizabalagai. Molecular phylogeny using internal transcribed spacer region (ITS1-5.8S-ITS2) showed a divergence between T. arrizabalagai n. sp., T. cossoni n. sp. and T. muris. Our findings of phylogeographically distinct Trichuris species despite some globally distributed host species requires further research into the distribution of different species, previously assumed to belong to T. muris, which has particular relevance for using these species as laboratory model organisms.


Assuntos
Filogenia , Doenças dos Roedores/parasitologia , Roedores/parasitologia , Tricuríase/parasitologia , Tricuríase/veterinária , Trichuris/classificação , Animais , Sudeste Asiático/epidemiologia , DNA de Helmintos/genética , DNA Espaçador Ribossômico/genética , Feminino , Variação Genética , Especificidade de Hospedeiro , Malásia/epidemiologia , Masculino , Filogeografia , Doenças dos Roedores/epidemiologia , Tailândia/epidemiologia , Tricuríase/epidemiologia , Trichuris/isolamento & purificação
8.
Int J Parasitol Parasites Wildl ; 12: 220-231, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32695576

RESUMO

Sarcocystis scandentiborneensis sp. nov. was discovered in histological sections of striated musculature of treeshrews (Tupaia minor, T. tana) from Northern Borneo. Sarcocysts were cigar-shaped, 102 µm-545 µm long, and on average 53 µm in diameter. The striated cyst wall varied in thickness (2-10 µm), depending on whether the finger-like, villous protrusions (VP) were bent. Ultrastructurally, sarcocysts were similar to wall type 12 but basal microtubules extended into VPs that tapered off with a unique U-shaped, electron-dense apical structure. In phylogenetic trees of the nuclear 18S rRNA gene, S. scandentiborneensis formed a distinct branch within a monophyletic subclade of Sarcocystis spp. with (colubrid) snake-rodent life cycle. We mapped all intraspecific (two haplotypes) and interspecific nucleotide substitutions to the secondary structure of the 18S rRNA gene: in both cases, the highest variability occurred within helices V2 and V4 but intraspecific variability mostly related to transitions, while transition/transversion ratios between S. scandentiborneensis, S. zuoi, and S. clethrionomyelaphis were skewed towards transversions. Lack of relevant sequences restricted phylogenetic analysis of the mitochondrial Cytochrome C oxidase subunit I (COI) gene to include only one species of Sarcocystis recovered from a snake host (S. pantherophisi) with which the new species formed a sister relationship. We confirm the presence of the functionally important elements of the COI barcode amino acid sequence of S. scandentiborneensis, whereby the frequency of functionally important amino acids (Alanine, Serine) was markedly different to other taxa of the Sarcocystidae. We regard S. scandentiborneensis a new species, highlighting that structurally or functionally important aspects of the 18S rRNA and COI could expand their utility for delineation of species. We also address the question why treeshrews, believed to be close to primates, carry a parasite that is genetically close to a Sarcocystis lineage preferably developing in the Rodentia as intermediate hosts.

9.
PeerJ ; 5: e3335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533979

RESUMO

Topographically complex regions often contain the close juxtaposition of closely related species along elevational gradients. The evolutionary causes of these elevational replacements, and thus the origin and maintenance of a large portion of species diversity along elevational gradients, are usually unclear because ecological differentiation along a gradient or secondary contact following allopatric diversification can produce the same pattern. We used reduced representation genomic sequencing to assess genetic relationships and gene flow between three parapatric pairs of closely related songbird taxa (Arachnothera spiderhunters, Chloropsis leafbirds, and Enicurus forktails) along an elevational gradient in Borneo. Each taxon pair presents a different elevational range distribution across the island, yet results were uniform: little or no gene flow was detected in any pairwise comparisons. These results are congruent with an allopatric "species-pump" model for generation of species diversity and elevational parapatry of congeners on Borneo, rather than in situ generation of species by "ecological speciation" along an elevational gradient.

10.
Zookeys ; (407): 121-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24899832

RESUMO

Phylogenetic relationships among Malaysia's long-tailed macaques have yet to be established, despite abundant genetic studies of the species worldwide. The aims of this study are to examine the phylogenetic relationships of Macaca fascicularis in Malaysia and to test its classification as a morphological subspecies. A total of 25 genetic samples of M. fascicularis yielding 383 bp of Cytochrome b (Cyt b) sequences were used in phylogenetic analysis along with one sample each of M. nemestrina and M. arctoides used as outgroups. Sequence character analysis reveals that Cyt b locus is a highly conserved region with only 23% parsimony informative character detected among ingroups. Further analysis indicates a clear separation between populations originating from different regions; the Malay Peninsula versus Borneo Insular, the East Coast versus West Coast of the Malay Peninsula, and the island versus mainland Malay Peninsula populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo's population was distinguished from Peninsula's population (99% and 100% bootstrap value in NJ and MP respectively and 1.00 posterior probability in Bayesian trees). The East coast population was separated from other Peninsula populations (64% in NJ, 66% in MP and 0.53 posterior probability in Bayesian). West coast populations were divided into 2 clades: the North-South (47%/54% in NJ, 26/26% in MP and 1.00/0.80 posterior probability in Bayesian) and Island-Mainland (93% in NJ, 90% in MP and 1.00 posterior probability in Bayesian). The results confirm the previous morphological assignment of 2 subspecies, M. f. fascicularis and M. f. argentimembris, in the Malay Peninsula. These populations should be treated as separate genetic entities in order to conserve the genetic diversity of Malaysia's M. fascicularis. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia.

11.
Comp Immunol Microbiol Infect Dis ; 35(1): 51-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22153360

RESUMO

Rickettsioses and bartonelloses are arthropod-borne diseases of mammals with widespread geographical distributions. Yet their occurrence in specific regions, their association with different vectors and hosts and the infection rate of arthropod-vectors with these agents remain poorly studied in South-east Asia. We conducted entomological field surveys in the Lao PDR (Laos) and Borneo, Malaysia by surveying fleas, ticks, and lice from domestic dogs and collected additional samples from domestic cows and pigs in Laos. Rickettsia felis was detected by real-time PCR with similar overall flea infection rate in Laos (76.6%, 69/90) and Borneo (74.4%, 268/360). Both of the encountered flea vectors Ctenocephalides orientis and Ctenocephalides felis felis were infected with R. felis. The degrees of similarity of partial gltA and ompA genes with recognized species indicate the rickettsia detected in two Boophilus spp. ticks collected from a cow in Laos may be a new species. Isolation and further characterization will be necessary to specify it as a new species. Bartonella clarridgeiae was detected in 3/90 (3.3%) and 2/360 (0.6%) of examined fleas from Laos and Borneo, respectively. Two fleas collected in Laos and one flea collected in Borneo were co-infected with both R. felis and B. clarridgeiae. Further investigations are needed in order to isolate these agents and to determine their epidemiology and aetiological role in unknown fever in patients from these areas.


Assuntos
Vetores Artrópodes/microbiologia , Infecções por Bartonella/veterinária , Bartonella/genética , Infecções por Rickettsia/veterinária , Rickettsia felis/genética , Animais , Bartonella/isolamento & purificação , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/transmissão , Bornéu/epidemiologia , Bovinos , Cães , Feminino , Genes Bacterianos , Humanos , Laos/epidemiologia , Ftirápteros/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/transmissão , Rickettsia felis/isolamento & purificação , Sifonápteros/microbiologia , Suínos , Carrapatos/microbiologia
12.
J Anim Ecol ; 75(5): 1212-23, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16922857

RESUMO

1. Non-volant animals in tropical rain forests differ in their ability to exploit the habitat above the forest floor and also in their response to habitat variability. It is predicted that specific movement trajectories are determined both by intrinsic factors such as ecological specialization, morphology and body size and by structural features of the surrounding habitat such as undergrowth and availability of supportive structures. 2. We applied spool-and-line tracking in order to describe movement trajectories and habitat segregation of eight species of small mammals from an assemblage of Muridae, Tupaiidae and Sciuridae in the rain forest of Borneo where we followed a total of 13,525 m path. We also analysed specific changes in the movement patterns of the small mammals in relation to habitat stratification between logged and unlogged forests. Variables related to climbing activity of the tracked species as well as the supportive structures of the vegetation and undergrowth density were measured along their tracks. 3. Movement patterns of the small mammals differed significantly between species. Most similarities were found in congeneric species that converged strongly in body size and morphology. All species were affected in their movement patterns by the altered forest structure in logged forests with most differences found in Leopoldamys sabanus. However, the large proportions of short step lengths found in all species for both forest types and similar path tortuosity suggest that the main movement strategies of the small mammals were not influenced by logging but comprised generally a response to the heterogeneous habitat as opposed to random movement strategies predicted for homogeneous environments. 4. Overall shifts in microhabitat use showed no coherent trend among species. Multivariate (principal component) analysis revealed contrasting trends for convergent species, in particular for Maxomys rajah and M. surifer as well as for Tupaia longipes and T. tana, suggesting that each species was uniquely affected in its movement trajectories by a multiple set of environmental and intrinsic features.


Assuntos
Ecossistema , Movimento/fisiologia , Muridae/fisiologia , Sciuridae/fisiologia , Tupaiidae/fisiologia , Animais , Bornéu , Análise de Componente Principal , Chuva , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa