Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 47(4): 488-505, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33119191

RESUMO

AIMS: Amyloid ß-oligomers (AßO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AßO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AßO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aß production (APP-PSEN1). METHODS AND RESULTS: Immunohistochemistry and confocal microscopy, using AßO-specific antibodies, confirmed LC AßO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AßO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AßO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aß-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS: The data suggest a close association between AßO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Locus Cerúleo/patologia , Neurônios/patologia , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia
2.
Epilepsia ; 61(10): 2106-2118, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32797628

RESUMO

OBJECTIVE: Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS: We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS: Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE: These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Descoberta de Drogas/métodos , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/uso terapêutico , Receptores de GABA-A/metabolismo , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Descoberta de Drogas/tendências , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Convulsões/genética , Convulsões/metabolismo , Especificidade da Espécie , Timol/química , Timol/farmacologia , Timol/uso terapêutico , Peixe-Zebra
3.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 272-281, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30724801

RESUMO

Early-life stress (ELS) is known to exert long-term effects on brain function, with resulting deleterious consequences for several aspects of mental health, including the development of addiction to drugs of abuse. One potential mechanism in humans is suggested by findings that ELS interacts with polymorphisms of the GABRA2 gene, encoding α2 subunits of GABAA receptors, to increase the risk for both post-traumatic stress disorder and vulnerability to cocaine addiction. We used a mouse model, in which the amount of material for nest building was reduced during early postnatal life, to study interactions between ELS and expression of α2-containing GABAA receptors in influencing cocaine-related behaviour. Breeding of parents heterozygous for a deletion of α2 resulted in litters containing homozygous knockout (α2), heterozygous knockout (α2) and wild-type (α2) offspring. Following the ELS procedure, the mice were allowed to develop to adulthood before being tested for the acute effect of cocaine on locomotor stimulation, behavioural sensitization to repeated cocaine and to cocaine-conditioned activity. Exposure to ELS resulted in increased acute locomotor stimulant effects of cocaine across all genotypes, with the most marked effects in α2 mice (which also showed increased activity following vehicle). Repeated cocaine administration to nonstressed mice resulted in sensitization in α2 and α2 mice, but, in keeping with previous findings, not in α2 mice. Previous exposure to ELS reduced sensitization in α2 mice, albeit not significantly, and abolished sensitization in α2 mice. Conditioned activity was elevated following ELS in all animals, independently of genotype. Thus, while the enhanced acute effects of cocaine following ELS being most marked in α2 mice suggests a function of α2-containing GABAA receptors in protecting against stress, the interaction between ELS and genotype in influencing sensitization may be more in keeping with ELS reducing expression of α2-containing GABAA receptors. The ability of ELS to increase cocaine-conditioned locomotor activity appears to be independent of α2-containing GABAA receptors.


Assuntos
Cocaína/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Estresse Psicológico/fisiopatologia , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Aprendizagem/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/metabolismo
4.
Anal Chem ; 90(8): 5247-5255, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29561593

RESUMO

Neurosteroids are brain-derived steroids, capable of rapidly modulating neuronal excitability in a nongenomic manner. Dysregulation of their synthesis or metabolism has been implicated in many pathological conditions. Here, we describe an isotope dilution based targeted and nontargeted (ID-TNT) profiling of carbonyl neurosteroids/steroids. The method combines stable isotope dilution, hydroxylamine derivatization, high-resolution MS scanning, and data-dependent MS/MS analysis, allowing absolute quantification of pregnenolone, progesterone, 5α-dihydroprogesterone, 3α,5α-tetrahydroprogesterone, and 3ß,5α-tetrahydroprogesterone, and relative quantification of other carbonyl containing steroids. The utility and validity of this approach was tested in an acute stress mouse model and via pharmacological manipulation of the steroid metabolic pathway with finasteride. We report that brain levels of 3α,5α-tetrahydroprogesterone, a potent enhancer of GABAA receptor (GABAAR-mediated inhibitory function, from control mice is in the 5-40 pmol/g range, a value greater than previously reported. The approach allows the use of data from targeted analysis to guide the normalization strategy for nontargeted data. Furthermore, novel findings, including a striking increase of brain pregnenolone following finasteride administration were discovered in this study. Collectively, our results indicate that this approach has distinct advantages for examining targeted and nontargeted neurosteroid/steroid pathways in animal models and could facilitate a better understanding of the physiological and pathological roles of neurosteroids as modulators of brain excitability.

5.
Front Neuroendocrinol ; 36: 28-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24929099

RESUMO

Regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Neurotransmissores/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de GABA-A/metabolismo , Estresse Psicológico/metabolismo , Humanos
6.
Cereb Cortex ; 25(9): 2440-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24646614

RESUMO

Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition.


Assuntos
Canabinoides/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Receptores de GABA/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Canabinoides/farmacologia , GABAérgicos/farmacologia , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transfecção
7.
J Neurosci ; 34(31): 10361-78, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080596

RESUMO

The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4-5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders.


Assuntos
Colo/anatomia & histologia , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Inibidores Enzimáticos/farmacologia , GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Bloqueadores dos Canais de Sódio/farmacologia , Somatostatina/metabolismo , Estresse Psicológico/metabolismo , Tetrodotoxina/farmacologia
8.
J Neurosci ; 34(3): 823-38, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431441

RESUMO

Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ß, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ(-/-) or α4(-/-) mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4(-/-) mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4(D1-/-)) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4(-/-) or α4(D1-/-) mice, blocked cocaine enhancement of CPP. In comparison, α4(D2-/-) mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ßδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Inibição Neural/fisiologia , Núcleo Accumbens/fisiologia , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Sinapses/efeitos dos fármacos
9.
J Physiol ; 593(1): 267-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556800

RESUMO

KEY POINTS: During neuronal development synaptic events mediated by GABAA receptors are progressively reduced in their duration, allowing for rapid and precise network function. Here we focused on ventrobasal thalamocortical neurones, which contribute to behaviourally relevant oscillations between thalamus and cortex. We demonstrate that the developmental decrease in the duration of inhibitory phasic events results predominantly from a precisely timed loss of locally produced neurosteroids, which act as positive allosteric modulators of the GABAA receptor. The mature thalamus retains the ability to synthesise neurosteroids, thus preserving the capacity to enhance both phasic and tonic inhibition, mediated by synaptic and extrasynaptic GABAA receptors, respectively, in physiological and pathophysiological scenarios associated with perturbed neurosteroid levels. Our data establish a potent, endogenous mechanism to locally regulate the GABAA receptor function and thereby influence thalamocortical activity. During brain development the duration of miniature inhibitory postsynaptic currents (mIPSCs) mediated by GABAA receptors (GABAA Rs) progressively reduces, to accommodate the temporal demands required for precise network activity. Conventionally, this synaptic plasticity results from GABAA R subunit reorganisation. In particular, in certain developing neurones synaptic α2-GABAA Rs are replaced by α1-GABAA Rs. However, in thalamocortical neurones of the mouse ventrobasal (VB) thalamus, the major alteration to mIPSC kinetics occurs on postnatal (P) day 10, some days prior to the GABAA R isoform change. Here, whole-cell voltage-clamp recordings from VB neurones of mouse thalamic slices revealed that early in postnatal development (P7-P8), the mIPSC duration is prolonged by local neurosteroids acting in a paracrine or autocrine manner to enhance GABAA R function. However, by P10, this neurosteroid 'tone' rapidly dissipates, thereby producing brief mIPSCs. This plasticity results from a lack of steroid substrate as pre-treatment of mature thalamic slices (P20-24) with the GABAA R-inactive precursor 5α-dihydroprogesterone (5α-DHP) resulted in markedly prolonged mIPSCs and a greatly enhanced tonic conductance, mediated by synaptic and extrasynaptic GABAA Rs, respectively. In summary, endogenous neurosteroids profoundly influence GABAergic neurotransmission in developing VB neurones and govern a transition from slow to fast phasic synaptic events. Furthermore, the retained capacity for steroidogenesis in the mature thalamus raises the prospect that certain physiological or pathophysiological conditions may trigger neurosteroid neosynthesis, thereby providing a local mechanism for fine-tuning neuronal excitability.


Assuntos
Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/farmacologia , 5-alfa-Di-Hidroprogesterona/farmacologia , Envelhecimento/fisiologia , Animais , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pregnanolona/farmacologia , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/fisiologia
10.
J Neurosci ; 33(37): 14850-68, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027285

RESUMO

Thalamocortical circuits govern cognitive, sensorimotor, and sleep-related network processes, and generate pathological activities during absence epilepsy. Inhibitory control of thalamocortical (TC) relay neurons is partially mediated by GABA released from neurons of the thalamic reticular nucleus (nRT), acting predominantly via synaptic α1ß2γ2 GABA(A) receptors (GABA(A)Rs). Importantly, TC neurons also express extrasynaptic α4ß2δ GABA(A)Rs, although how they cooperate with synaptic GABA(A)Rs to influence relay cell inhibition, particularly during physiologically relevant nRT output, is unknown. To address this question, we performed paired whole-cell recordings from synaptically coupled nRT and TC neurons of the ventrobasal (VB) complex in brain slices derived from wild-type and extrasynaptic GABA(A)R-lacking, α4 "knock-out" (α4(0/0)) mice. We demonstrate that the duration of VB phasic inhibition generated in response to nRT burst firing is greatly reduced in α4(0/0) pairs, suggesting that action potential-dependent phasic inhibition is prolonged by recruitment of extrasynaptic GABA(A)Rs. Furthermore, the influence of nRT tonic firing frequency on VB holding current is also greatly reduced in α4(0/0) pairs, implying that the α4-GABA(A)R-mediated tonic conductance of relay neurons is dynamically influenced, in an activity-dependent manner, by nRT tonic firing intensity. Collectively, our data reveal that extrasynaptic GABA(A)Rs of the somatosensory thalamus do not merely provide static tonic inhibition but can also be dynamically engaged to couple presynaptic activity to postsynaptic excitability. Moreover, these processes are highly sensitive to the δ-selective allosteric modulator, DS2 and manipulation of GABA transport systems, revealing novel opportunities for therapeutic intervention in thalamocortical network disorders.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de GABA-A/metabolismo , Tálamo/citologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Simulação por Computador , Estimulação Elétrica , GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/efeitos dos fármacos , Ácidos Nipecóticos/farmacologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores de GABA-A/genética , Tilosina/análogos & derivados , Tilosina/farmacologia
11.
J Neurosci ; 33(50): 19534-54, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336719

RESUMO

Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ(0/0)) exhibit altered maternal behavior. Intriguingly, δ(0/0) offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ(0/0) pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress neurocircuitry.


Assuntos
Astrócitos/fisiologia , Hipotálamo/fisiologia , Neurotransmissores/metabolismo , Estresse Psicológico/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Neurotransmissores/farmacologia , Receptores de GABA-A/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
12.
J Neurosci ; 33(9): 3905-14, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447601

RESUMO

Activation of GABA(A) receptors (GABA(A)Rs) produces two forms of inhibition: phasic inhibition generated by the rapid, transient activation of synaptic GABA(A)Rs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of perisynaptic or extrasynaptic GABA(A)Rs, which can detect extracellular GABA. Such tonic GABA(A)R-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABA(A) receptor openings. This tonic GABA(A)R conductance is resistant to the competitive GABA(A)R antagonist SR95531 (gabazine), which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker, picrotoxin. When slices are perfused with 200 nm GABA, a concentration that is comparable to CSF concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABA(A)Rs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations.


Assuntos
Fenômenos Biofísicos/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos/efeitos dos fármacos , Biofísica , Cromatografia Líquida de Alta Pressão , Giro Denteado/citologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdiálise , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
13.
J Biol Chem ; 288(30): 21558-68, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23740249

RESUMO

The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Šgap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity.


Assuntos
Conformação Proteica , Estrutura Secundária de Proteína , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/fisiologia , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/genética , Arginina/fisiologia , Sítios de Ligação/genética , Células HEK293 , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Técnicas de Patch-Clamp , Multimerização Proteica , Receptores 5-HT3 de Serotonina/genética , Homologia de Sequência de Aminoácidos , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Torpedo , Transfecção
14.
J Biol Chem ; 288(44): 31592-601, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24030822

RESUMO

Structural models of Cys-loop receptors based on homology with the Torpedo marmorata nicotinic acetylcholine receptor infer the existence of cytoplasmic portals within the conduction pathway framed by helical amphipathic regions (termed membrane-associated (MA) helices) of adjacent intracellular M3-M4 loops. Consistent with these models, two arginine residues (Arg(436) and Arg(440)) within the MA helix of 5-hydroxytryptamine type 3A (5-HT3A) receptors act singularly as rate-limiting determinants of single-channel conductance (γ). However, there is little conservation in primary amino acid sequences across the cytoplasmic loops of Cys-loop receptors, limiting confidence in the fidelity of this particular aspect of the 5-HT3A receptor model. We probed the majority of residues within the MA helix of the human 5-HT3A subunit using alanine- and arginine-scanning mutagenesis and the substituted cysteine accessibility method to determine their relative influences upon γ. Numerous residues, prominently those at the 435, 436, 439, and 440 positions, were found to markedly influence γ. This approach yielded a functional map of the 5-HT3A receptor portals, which agrees well with the homology model.


Assuntos
Modelos Moleculares , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Linhagem Celular , Humanos , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores 5-HT3 de Serotonina/genética , Homologia Estrutural de Proteína , Torpedo
15.
Eur J Neurosci ; 40(3): 2487-501, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24773078

RESUMO

Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described 'spillover' mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAA Rs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1ß2γ2) and extrasynaptic (α4ß2δ) GABAA Rs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α1(0/0) ) or extrasynaptic (δ(0/0) ) GABAA Rs. Etomidate (3 µm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABAA Rs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAA Rs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states.


Assuntos
Anestésicos Intravenosos/farmacologia , Etomidato/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Tálamo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/genética , Sinapses/metabolismo
16.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672476

RESUMO

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Assuntos
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Camundongos , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Masculino , Transmissão Sináptica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 107(5): 2289-94, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133874

RESUMO

Because GABA(A) receptors containing alpha2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine's ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha2-GABA(A) receptors (alpha2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Adulto , Animais , Azidas/farmacologia , Benzodiazepinas/farmacologia , Sítios de Ligação/genética , Estudos de Casos e Controles , Transtornos Relacionados ao Uso de Cocaína/genética , Condicionamento Psicológico , Dopamina/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A/deficiência , Recompensa , Adulto Jovem
18.
Pain ; 164(10): 2253-2264, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171192

RESUMO

ABSTRACT: Exposure to severely stressful events during childhood is associated with poor health outcomes in later life, including chronic pain and substance use disorder. However, the mediators and mechanisms are unclear. We investigated the impact of a well-characterized mouse model of early-life adversity, fragmented maternal care (FC) between postnatal day 2 and 9, on nociception, inflammatory hypersensitivity, and responses to morphine. Male and female mice exposed to FC exhibited prolonged basal thermal withdrawal latencies and decreased mechanical sensitivity. In addition, morphine had reduced potency in mice exposed to FC and their development of tolerance to morphine was accelerated. Quantitative PCR analysis in several brain regions and the spinal cords of juvenile and adult mice revealed an impact of FC on the expression of genes encoding opioid peptide precursors and their receptors. These changes included enhanced abundance of δ opioid receptor transcript in the spinal cord. Acute inflammatory hypersensitivity (induced by hind paw administration of complete Freund's adjuvant) was unaffected by exposure to FC. However, after an initial recovery of mechanical hypersensitivity, there was a reappearance in mice exposed to FC by day 15, which was not seen in control mice. Changes in nociception, morphine responses, and hypersensitivity associated with FC were apparent in males and females but were absent from mice lacking δ receptors or ß-arrestin2. These findings suggest that exposure to early-life adversity in mice enhances δ receptor expression leading to decreased basal sensitivity to noxious stimuli coupled with accelerated morphine tolerance and enhanced vulnerability to persistent inflammatory hypersensitivity.


Assuntos
Morfina , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/efeitos adversos , Hiperalgesia/etiologia , Hiperalgesia/induzido quimicamente , Morfina/efeitos adversos , Dor/induzido quimicamente , Receptores Opioides delta/genética , Estresse Psicológico , Regulação para Cima
19.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553242

RESUMO

Extrasynaptic GABAA receptors (GABAARs) composed of α4, ß, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4ßδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Núcleo Accumbens , Receptores de GABA-A , Neurônios , Camundongos Knockout , Ácido gama-Aminobutírico/farmacologia , Receptores de Dopamina D2
20.
J Biol Chem ; 286(18): 16008-17, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454663

RESUMO

The determinants of single channel conductance (γ) and ion selectivity within eukaryotic pentameric ligand-gated ion channels have traditionally been ascribed to amino acid residues within the second transmembrane domain and flanking sequences of their component subunits. However, recent evidence suggests that γ is additionally controlled by residues within the intracellular and extracellular domains. We examined the influence of two anionic residues (Asp(113) and Asp(127)) within the extracellular vestibule of a high conductance human mutant 5-hydroxytryptamine type-3A (5-HT(3)A) receptor (5-HT(3)A(QDA)) upon γ, modulation of the latter by extracellular Ca(2+), and the permeability of Ca(2+) with respect to Cs(+) (P(Ca)/P(Cs)). Mutations neutralizing (Asp → Asn), or reversing (Asp → Lys), charge at the 113 locus decreased inward γ by 46 and 58%, respectively, but outward currents were unaffected. The D127N mutation decreased inward γ by 82% and also suppressed outward currents, whereas the D127K mutation caused loss of observable single channel currents. The forgoing mutations, except for D127K, which could not be evaluated, ameliorated suppression of inwardly directed single channel currents by extracellular Ca(2+). The P(Ca)/P(Cs) of 3.8 previously reported for the 5-HT(3)A(QDA) construct was reduced to 0.13 and 0.06 by the D127N and D127K mutations, respectively, with lesser, but clearly significant, effects caused by the D113N (1.04) and D113K (0.60) substitutions. Charge selectivity between monovalent cations and anions (P(Na)/P(Cl)) was unaffected by any of the mutations examined. The data identify two key residues in the extracellular vestibule of the 5-HT(3)A receptor that markedly influence γ, P(Ca)/P(Cs), and additionally the suppression of γ by Ca(2+).


Assuntos
Cálcio/química , Receptores 5-HT3 de Serotonina/química , Substituição de Aminoácidos , Cálcio/metabolismo , Linhagem Celular , Humanos , Transporte de Íons/fisiologia , Mutação de Sentido Incorreto , Permeabilidade , Estrutura Terciária de Proteína , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa