Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Risk Anal ; 34(4): 751-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24168722

RESUMO

Microbiological food safety is an important economic and health issue in the context of globalization and presents food business operators with new challenges in providing safe foods. The hazard analysis and critical control point approach involve identifying the main steps in food processing and the physical and chemical parameters that have an impact on the safety of foods. In the risk-based approach, as defined in the Codex Alimentarius, controlling these parameters in such a way that the final products meet a food safety objective (FSO), fixed by the competent authorities, is a big challenge and of great interest to the food business operators. Process risk models, issued from the quantitative microbiological risk assessment framework, provide useful tools in this respect. We propose a methodology, called multivariate factor mapping (MFM), for establishing a link between process parameters and compliance with a FSO. For a stochastic and dynamic process risk model of Listeriamonocytogenes in soft cheese made from pasteurized milk with many uncertain inputs, multivariate sensitivity analysis and MFM are combined to (i) identify the critical control points (CCPs) for L.monocytogenes throughout the food chain and (ii) compute the critical limits of the most influential process parameters, located at the CCPs, with regard to the specific process implemented in the model. Due to certain forms of interaction among parameters, the results show some new possibilities for the management of microbiological hazards when a FSO is specified.


Assuntos
Queijo/microbiologia , Listeria monocytogenes/isolamento & purificação , Leite/microbiologia , Pasteurização , Incerteza , Animais , Análise Multivariada
2.
J Theor Biol ; 258(1): 43-52, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19490864

RESUMO

In the context of managed herds, epidemiological models usually take into account relatively complex interactions involving a high number of parameters. Some parameters may be uncertain and/or highly variable, especially epidemiological parameters. Their impact on the model outputs must then be assessed by a sensitivity analysis, allowing to identify key parameters. The prevalence over time is an output of particular interest in epidemiological models, so sensitivity analysis methods adapted to such dynamic output are needed. In this paper, such a sensitivity analysis method, based on a principal component analysis and on analysis of variance, is presented. It allows to compute a generalised sensitivity index for each parameter of a model representing Salmonella spread within a pig batch. The model is a stochastic discrete-time model describing the batch dynamics and movements between rearing rooms, from birth to slaughterhouse delivery. Four health states were introduced: Salmonella-free, seronegative shedder, seropositive shedder and seropositive carrier. The indirect transmission was modelled via an infection probability function depending on the quantity of Salmonella in the rearing room. Simulations were run according to a fractional factorial design enabling the estimation of main effects and two-factor interactions. For each of the 18 epidemiological parameters, four values were chosen, leading to 4096 scenarios. For each scenario, 15 replications were performed, leading to 61440 simulations. The sensitivity analysis was then conducted on the seroprevalence output. The parameters governing the infection probability function and residual room contaminations were identified as key parameters. To control the Salmonella seroprevalence, efficient measures should therefore aim at these parameters. Moreover, the shedding rate and maternal protective factor also had a major impact. Therefore, further investigation on the protective effect of maternal or post-infection antibodies would be needed.


Assuntos
Modelos Estatísticos , Salmonelose Animal/transmissão , Doenças dos Suínos/transmissão , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/microbiologia , Feminino , Masculino , Modelos Biológicos , Salmonelose Animal/sangue , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/sangue , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa