Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850535

RESUMO

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Mitocôndrias/metabolismo , Infecções por Pseudomonas/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Ubiquitina-Proteína Ligases/metabolismo
2.
J Biol Chem ; 291(22): 11911-27, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27036943

RESUMO

The mitochondrial tyrosyl-tRNA synthetases (mtTyrRSs) of Pezizomycotina fungi, a subphylum that includes many pathogenic species, are bifunctional proteins that both charge mitochondrial tRNA(Tyr) and act as splicing cofactors for autocatalytic group I introns. Previous studies showed that one of these proteins, Neurospora crassa CYT-18, binds group I introns by using both its N-terminal catalytic and C-terminal anticodon binding domains and that the catalytic domain uses a newly evolved group I intron binding surface that includes an N-terminal extension and two small insertions (insertions 1 and 2) with distinctive features not found in non-splicing mtTyrRSs. To explore how this RNA binding surface diverged to accommodate different group I introns in other Pezizomycotina fungi, we determined x-ray crystal structures of C-terminally truncated Aspergillus nidulans and Coccidioides posadasii mtTyrRSs. Comparisons with previous N. crassa CYT-18 structures and a structural model of the Aspergillus fumigatus mtTyrRS showed that the overall topology of the group I intron binding surface is conserved but with variations in key intron binding regions, particularly the Pezizomycotina-specific insertions. These insertions, which arose by expansion of flexible termini or internal loops, show greater variation in structure and amino acids potentially involved in group I intron binding than do neighboring protein core regions, which also function in intron binding but may be more constrained to preserve mtTyrRS activity. Our results suggest a structural basis for the intron specificity of different Pezizomycotina mtTyrRSs, highlight flexible terminal and loop regions as major sites for enzyme diversification, and identify targets for therapeutic intervention by disrupting an essential RNA-protein interaction in pathogenic fungi.


Assuntos
Aspergillus nidulans/enzimologia , Coccidioides/enzimologia , Íntrons/genética , Mitocôndrias/enzimologia , Splicing de RNA/genética , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Domínio Catalítico , Coccidioides/genética , Coccidioides/crescimento & desenvolvimento , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Neurospora crassa/enzimologia , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Tirosina-tRNA Ligase/genética
3.
PLoS Biol ; 12(12): e1002028, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25536042

RESUMO

The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was "fixed" by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins.


Assuntos
Evolução Molecular , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimologia , Splicing de RNA/genética , RNA Fúngico/metabolismo , Tirosina-tRNA Ligase/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Íntrons/genética , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA Catalítico/metabolismo , RNA Fúngico/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Deleção de Sequência , Difração de Raios X
4.
Curr Microbiol ; 60(4): 274-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19924480

RESUMO

Putative penicillin-binding proteins (PBPs) were identified in the genome of the Burkholderia cenocepacia strain J2315 based on homology to E. coli PBPs. The three sequences identified as homologs of E. coli PBP1a, BCAL2021, BCAL0274, and BCAM2632, were cloned and expressed as His(6)-tagged fusion proteins in E. coli. The fusion proteins were isolated and shown to bind beta-lactams, indicating these putative PBPs have penicillin-binding activity.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
5.
J Cell Biol ; 209(6): 781-7, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26101215

RESUMO

In response to stress, cellular compartments activate signaling pathways that mediate transcriptional programs to promote survival and reestablish homeostasis. Manipulation of the magnitude and duration of the activation of stress responses has been proposed as a strategy to prevent or repair the damage associated with aging or degenerative diseases. However, as these pathways likely evolved to respond specifically to transient perturbations, the unpredictability of prolonged activation should be considered.


Assuntos
Resposta ao Choque Térmico/fisiologia , Deficiências na Proteostase/fisiopatologia , Estresse Fisiológico/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Fator 1 Ativador da Transcrição/metabolismo , Envelhecimento/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa