Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9202-9211, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037031

RESUMO

The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.


Assuntos
Proteínas Sanguíneas , Nanopartículas , Adsorção , Nanopartículas/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/análise , Humanos , Coroa de Proteína/química , Fluorescência , Cinética
2.
J Am Chem Soc ; 146(29): 19886-19895, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990188

RESUMO

Single-atom catalysts (SACs) open up new possibilities for advanced technologies. However, a major complication in preparing high-density single-atom sites is the aggregation of single atoms into clusters. This complication stems from the delicate balance between the diffusion and stabilization of metal atoms during pyrolysis. Here, we present pressure-controlled metal diffusion as a new concept for fabricating ultra-high-density SACs. Reducing the pressure inhibits aggregation substantially, resulting in almost three times higher single-atom loadings than those obtained at ambient pressure. Molecular dynamics and computational fluid dynamics simulations reveal the role of a metal hopping mechanism, maximizing the metal atom distribution through an increased probability of metal-ligand binding. The investigation of the active site density by electrocatalytic oxygen reduction validates the robustness of our approach. The first realization of Ullmann-type carbon-oxygen couplings catalyzed on single Cu sites demonstrates further options for efficient heterogeneous catalysis.

3.
J Am Chem Soc ; 146(17): 11991-11999, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639465

RESUMO

The complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters. Tracked by phasor-fluorescence lifetime imaging (phasor-FLIM) in epithelial cells (L929, A549, MDA-MB 231) and correlative light-electron microscopy and tomography (CLEM), spatiotemporal splicing of the assembly events shows time-correlated metabolic dysfunction. The biological impact begins with assembly-induced endosomal disruption that reduces glucose transport into the cells, which, in turn, stymies mitochondrial respiration.


Assuntos
Imagem Óptica , Humanos , Endossomos/metabolismo , Nanofibras/química , Linhagem Celular , Animais
4.
J Am Chem Soc ; 146(8): 5195-5203, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38275287

RESUMO

Single-molecule localization microscopy (SMLM) is a powerful technique to achieve super-resolution imaging beyond the diffraction limit. Although various types of blinking fluorophores are currently considered for SMLM, intrinsic blinking fluorophores remain rare at the single-molecule level. Here, we report the synthesis of nanographene-based intrinsic burst-blinking fluorophores for highly versatile SMLM. We image amyloid fibrils in air and in various pH solutions without any additive and lysosome dynamics in live mammalian cells under physiological conditions. In addition, the single-molecule labeling of nascent proteins in primary sensory neurons was achieved with azide-functionalized nanographenes via click chemistry. SMLM imaging reveals higher local translation at axonal branching with unprecedented detail, while the size of translation foci remained similar throughout the entire network. These various results demonstrate the potential of nanographene-based fluorophores to drastically expand the applicability of super-resolution imaging.


Assuntos
Piscadela , Corantes Fluorescentes , Animais , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , Lisossomos/metabolismo , Mamíferos/metabolismo
5.
Angew Chem Int Ed Engl ; 63(18): e202400101, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38407424

RESUMO

Investigations into the selective oxidation of inert sp3 C-H bonds using polymer photocatalysts under mild conditions have been limited. Additionally, the structure-activity relationship of photocatalysts often remains insufficiently explored. Here, a series of thiophene-based covalent triazine frameworks (CTFs) are used for the efficient and selective oxidation of hydrocarbons to aldehydes or ketones under ambient aerobic conditions. Spectroscopic methods conducted in situ and density functional theory (DFT) calculations revealed that the sulfur atoms within the thiophene units play a pivotal role as oxidation sites due to the generation of photogenerated holes. The effect of photogenerated holes on photocatalytic toluene oxidation was investigated by varying the length of the spacer in a CTF donor-acceptor based photocatalyst. Furthermore, the manipulation of reactive oxygen species was employed to enhance selectivity by weakening the peroxidative capacity. As an illustrative example, this study successfully demonstrated the synthesis of a precursor of the neurological drug AMG-579 using a photocatalytic protocol.

6.
Small ; 19(25): e2206454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929281

RESUMO

Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.

7.
Chembiochem ; 24(7): e202200718, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715701

RESUMO

Polymersome-based biomimetic nanoreactors (PBNs) have generated great interest in nanomedicine and cell mimicry due to their robustness, tuneable chemistry, and broad applicability in biologically relevant fields. In this concept review, we mainly discuss the state of the art in functional polymersomes as biomimetic nanoreactors with membrane-controlled transport. PBNs that use environmental changes or external stimuli to adjust membrane permeability while maintaining structural integrity are highlighted. By encapsulating catalytic species, PBNs are able to convert inactive substrates into functional products in a controlled manner. In addition, special attention is paid to the use of PBNs as tailored artificial organelles with biomedical applications in vitro and in vivo, facilitating the fabrication of next-generation artificial organelles as therapeutic nanocompartments.


Assuntos
Células Artificiais , Biomimética , Nanomedicina , Transporte Biológico , Polímeros/química
8.
Macromol Rapid Commun ; 44(16): e2200611, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36098551

RESUMO

Multifunctional nanocarriers enhance the treatment efficacy for modern therapeutics and have gained increasing importance in biomedical research. Codelivery of multiple bioactive molecules enables synergistic therapies. Coencapsulation of cargo molecules into one nanocarrier system is challenging due to different physicochemical properties of the cargo molecules. Additionally, coencapsulation of multiple molecules simultaneously shall proceed with high control and efficiency. Orthogonal approaches for the preparation of nanocarriers are essential to encapsulate sensitive bioactive molecules while preserving their bioactivity. Preparation of nanocarriers by physical processes (i.e., self-assembly or coacervation) and chemical reactions (i.e., click reactions, polymerizations, etc.) are considered as orthogonal methods to most cargo molecules. This review shall act as a guideline to allow the reader to select a suitable preparation protocol for a desired nanocarrier system. This article helps to select for combinations of cargo molecules (hydrophilic-hydrophobic, small-macro, organic-inorganic) with nanocarrier material and synthesis protocols. The focus of this article lies on the coencapsulation of multiple cargo molecules into biocompatible and biodegradable nanocarriers prepared by orthogonal strategies. With this toolbox, the selection of a preparation method for a known set of cargo molecules to prepare the desired biodegradable and loaded nanocarrier shall be provided.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas
9.
Chem Soc Rev ; 51(1): 128-152, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34762084

RESUMO

Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.


Assuntos
Ácidos Nucleicos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Polímeros , Proteínas
10.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569548

RESUMO

Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.

11.
Angew Chem Int Ed Engl ; 62(15): e202216159, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708519

RESUMO

Using photocatalytic oxidation to convert basic chemicals into high value compounds in environmentally benign reaction media is a current focus in catalytic research. The challenge lies in gaining controllability over product formation selectivity. We design covalent triazine frameworks as heterogeneous, metal-free, and recyclable photocatalysts for visible-light-driven switchable selective oxidation of styrene in pure water. Selectivity in product formation was achieved by activation or deactivation of the specific photogenerated oxygen species. Using the same photocatalyst, by deactivation of photogenerated H2 O2 , benzaldehyde was obtained with over 99 % conversion and over 99 % selectivity as a single product. The highly challenging and sensitive epoxidation of styrene was carried out by creating peroxymonocarbonate as an initial epoxidation agent in the presence of bicarbonate, which led to formation of styrene oxide with a selectivity up to 76 % with near quantitative conversion. This study demonstrates a preliminary yet interesting example for simple control over switchable product formation selectivity for challenging oxidation reactions of organic compounds in pure water.

12.
Angew Chem Int Ed Engl ; 62(17): e202217652, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36749562

RESUMO

Pseudo-homogeneous polymeric photocatalysts are an emerging class of highly efficient and tunable photocatalytic materials, where the photocatalytic centers are easily accessible. The creation of highly efficient photocatalytic materials that can be rapidly separated and recovered is one of the critical challenges in photocatalytic chemistry. Here, we describe pH-responsive photocatalytic nanoparticles that are active and well-dispersed under acidic conditions but aggregate instantly upon elevation of pH, enabling easy recovery. These responsive photocatalytic polymers can be used in various photocatalytic transformations, including CrVI reduction and photoredox alkylation of indole derivative. Notably, the cationic nature of the photocatalyst accelerates reaction rate of an anionic substrate compared to uncharged species. These photocatalytic particles could be readily recycled allowing multiple successive photocatalytic reactions with no clear loss in activity.

13.
Angew Chem Int Ed Engl ; 62(11): e202216966, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36517933

RESUMO

Living organisms compartmentalize their catalytic reactions in membranes for increased efficiency and selectivity. To mimic the organelles of eukaryotic cells, we develop a mild approach for in situ encapsulating enzymes in aqueous-core silica nanocapsules. In order to confine the sol-gel reaction at the water/oil interface of miniemulsion, we introduce an aminosilane to the silica precursors, which serves as both catalyst and an amphiphilic anchor that electrostatically assembles with negatively charged hydrolyzed alkoxysilanes at the interface. The semi-permeable shell protects enzymes from proteolytic attack, and allows the transport of reactants and products. The enzyme-carrying nanocapsules, as synthetic nano-organelles, are able to perform cascade reactions when enveloped in a polymer vesicle, mimicking the hierarchically compartmentalized reactions in eukaryotic cells. This in situ encapsulation approach provides a versatile platform for the delivery of biomacromolecules.


Assuntos
Células Artificiais , Nanocápsulas , Água , Catálise , Dióxido de Silício
14.
Angew Chem Int Ed Engl ; 62(44): e202308761, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496129

RESUMO

Enzymatic reactions can consume endogenous nutrients of tumors and produce cytotoxic species and are therefore promising tools for treating malignant tumors. Inspired by nature where enzymes are compartmentalized in membranes to achieve high reaction efficiency and separate biological processes with the environment, we develop liposomal nanoreactors that can perform enzymatic cascade reactions in the aqueous nanoconfinement of liposomes. The nanoreactors effectively inhibited tumor growth in vivo by consuming tumor nutrients (glucose and oxygen) and producing highly cytotoxic hydroxyl radicals (⋅OH). Co-compartmentalization of glucose oxidase (GOx) and horseradish peroxidase (HRP) in liposomes could increase local concentration of the intermediate product hydrogen peroxide (H2 O2 ) as well as the acidity due to the generation of gluconic acid by GOx. Both H2 O2 and acidity accelerate the second-step reaction by HRP, hence improving the overall efficiency of the cascade reaction. The biomimetic compartmentalization of enzymatic tandem reactions in biocompatible liposomes provides a promising direction for developing catalytic nanomedicines in antitumor therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Lipossomos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glucose Oxidase/farmacologia , Peroxidase do Rábano Silvestre , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia , Peróxido de Hidrogênio/uso terapêutico
15.
J Am Chem Soc ; 144(16): 7320-7326, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35363487

RESUMO

Biocatalysis has become a powerful tool in synthetic chemistry, where enzymes are used to produce highly selective products under mild conditions. Using photocatalytically regenerated cofactors in synergistic combination with enzymes in a cascade fashion offers an efficient synthetic route to produce specific compounds. However, the combination of enzymes and photocatalysts has been limited due to the rapid degradation of the biomaterials by photogenerated reactive oxygen species, which denature and deactivate the enzymatic material. Here, we design core-shell structured porous nano-photoreactors for highly stable and recyclable photobiocatalysis under aerobic conditions. The enzymatic cofactor NAD+ from NADH can be efficiently regenerated by the photoactive organosilica core, while photogenerated active oxygen species are trapped and deactivated through the non-photoactive shell, protecting the enzymatic material. The versatility of these photocatalytic core-shell nanoreactors was demonstrated in tandem with two different enzymatic systems, glycerol dehydrogenase and glucose 1-dehydrogenase, where long-term enzyme stability was observed for the core-shell photocatalytic system.


Assuntos
Coenzimas , Glucose 1-Desidrogenase , Biocatálise
16.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35729777

RESUMO

Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.


Assuntos
Nanoestruturas , Platina , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Homeostase , Peróxido de Hidrogênio , Nanoestruturas/química
17.
Small ; 18(15): e2106094, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224835

RESUMO

This work analyzes the intracellular fate of protein-based nanocarriers along their endolysosomal pathway by means of correlative light and electron microscopy methods. To unambiguously identify the nanocarriers and their degradation remnants in the cellular environment, they are labeled with fluorescent, inorganic nanoplatelets. This allows tracking the nanocarriers on their intracellular pathway by means of electron microscopy imaging. From the present data, it is possible to identify different cell compartments in which the nanocarriers are processed. Finally, three different terminal routes for the intracellular destiny of the nanocarriers are presented. These findings are important to reveal the degradation process of protein nanocapsules and contribute to the understanding of the therapeutic success of an encapsulated drug.


Assuntos
Nanocápsulas , Nanopartículas , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Lisossomos/metabolismo
18.
Small ; 18(3): e2103138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761508

RESUMO

Apolipoproteins are an important class of proteins because they provide a so-called stealth effect to nanoparticles. The stealth effect on nanocarriers leads to a reduced unspecific uptake into immune cells and thereby to a prolonged blood circulation time. Herein, a novel strategy to bind apolipoproteins specifically on nanoparticles by adjusting the temperature during their incubation in human plasma is presented. This specific binding, in turn, allows a control of the stealth behavior of the nanoparticles. Nanoparticles with a well-defined poly(N-isopropylacrylamide) shell are prepared, displaying a reversible change of hydrophobicity at a temperature around 32 °C. It is shown by label-free quantitative liquid chromatography-mass spectrometry that the nanoparticles are largely enriched with apolipoprotein J (clusterin) at 25 °C while they are enriched with apolipoprotein A1 and apolipoprotein E at 37 °C. The temperature-dependent protein binding is found to significantly influence the uptake of the nanoparticles by RAW264.7 and HeLa cells. The findings imply that the functionalization of nanoparticles with temperature-responsive materials is a suitable method for imparting stealth properties to nanocarriers for drug-delivery.


Assuntos
Nanopartículas , Coroa de Proteína , Apolipoproteínas , Células HeLa , Humanos , Nanopartículas/química , Coroa de Proteína/química , Temperatura
19.
Biomacromolecules ; 23(10): 4282-4288, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36083699

RESUMO

When in contact with a biological medium, the surfaces of nanoparticles are usually covered by proteins. In this regard, it was found that poly(ethylene glycol) (PEG) promotes the "stealth effect". This implies a reduction of unspecific protein adsorption and cellular uptake. Although information about the PEG-protein interaction was reported, more accurate and sophisticated structure and dynamics analyses are needed to understand the interaction processes in detail. This work studies the PEG-protein interaction using model nanoparticles stabilized either by the PEG-based surfactant Lutensol AT50 or sodium dodecyl sulfate. The interaction with human serum albumin was studied using neutron scattering techniques. The parameters obtained by small-angle neutron scattering yielded information about the adsorbed protein layer thickness. Protein structure changes were detected via differential scanning fluorimetry and elastic neutron scattering. This combination gives a better insight into the PEG-protein interaction, contributing to the design of nanomaterials for medical applications.


Assuntos
Nanopartículas , Polietilenoglicóis , Adsorção , Excipientes , Humanos , Nanopartículas/química , Polietilenoglicóis/química , Proteínas/química , Albumina Sérica Humana , Dodecilsulfato de Sódio/química , Tensoativos/química
20.
Biomacromolecules ; 23(6): 2236-2242, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35593713

RESUMO

In many solid tumors, increased upregulation of transmembrane serine proteases (TTSPs) leads to an overactivation of growth factors, which promotes tumor progression. Here, we have used a combinatorial methodology to develop high-affinity tetrapeptidic inhibitors. A previous virtual screening of 8000 peptide combinations against the crystal structure of the TTSP hepsin identified a series of recognition sequences, customized for the non-prime substrate binding (P) sites of this serine protease. A combination of the top recognition sequences with an electrophilic warhead resulted in highly potent inhibitors with good selectivity against coagulation proteases factor Xa and thrombin. Structure-activity relationships of two selected compounds were further elucidated by investigation of their stability in biological fluids as well as the influence of the warhead and truncated inhibitors on the inhibitory potency. Overall, this methodology yielded compounds as selective inhibitors for potential cancer drug development, where hepsin is overexpressed.


Assuntos
Peptidomiméticos , Desenho de Fármacos , Peptidomiméticos/farmacologia , Serina Endopeptidases/química , Serina Proteases , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa