Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768690

RESUMO

This study describes new platinum(II) cationic five-coordinate complexes (1-R,R') of the formula [PtR(NHC)(dmphen)(ethene)]CF3SO3 (dmphen = 2,9-dimethyl-1,10-phenanthroline), containing in their axial positions an alkyl group R (methyl or octyl) and an imidazole-based NHC-carbene ligand with a substituent R' of variable length (methyl or octyl) on one nitrogen atom. The Pt-carbene bond is stable both in DMSO and in aqueous solvents. In DMSO, a gradual substitution of dmphen and ethene is observed, with the formation of a square planar solvated species. Octanol/water partitioning studies have revealed the order of hydrophobicity of the complexes (1-Oct,Me > 1-Oct,Oct > 1-Me,Oct > 1-Me,Me). Their biological activity was investigated against two pairs of cancer and non-cancer cell lines. The tested drugs were internalized in cancer cells and able to activate the apoptotic pathway. The reactivity of 1-Me,Me with DNA and protein model systems was also studied using UV-vis absorption spectroscopy, fluorescence, and X-ray crystallography. The compound binds DNA and interacts in various ways with the model protein lysozyme. Remarkably, structural data revealed that the complex can bind lysozyme via non-covalent interactions, retaining its five-coordinate geometry.


Assuntos
Antineoplásicos , Muramidase , Antineoplásicos/farmacologia , Antineoplásicos/química , Cristalografia por Raios X , Dimetil Sulfóxido , DNA , Interações Hidrofóbicas e Hidrofílicas , Compostos de Platina/química , Compostos de Platina/farmacologia
2.
ChemSusChem ; 17(20): e202400612, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747321

RESUMO

[Cp*Ir(R-pica)Cl] (Cp*=pentamethylcyclopentadienyl anion, pica=2-picolineamidate) complexes bearing carbohydrate substituents on the amide nitrogen atom (R=methyl-ß-D-gluco-pyranosid-2-yl, 1; methyl-3,4,6-tri-O-acetyl-ß-D-glucopyranosid-2-yl, 2) were tested as catalysts for formic acid dehydrogenation in water. TOFMAX values over 12000 h-1 and 50000 h-1 were achieved at 333 K for 1 and 2, respectively, with TON values over 35000 for both catalysts. Comparison with the simpler cyclohexyl-substituted analogue (3) indicated that glucosyl-based complexes are much better performing under the same experimental conditions (TOFMAX=5144 h-1, TON=5000 at pH 2.5 for 3) owing to a lower tendency to isomerize to the less active k2-N,O isomer upon protonation. The 5-fold increase in TOFMAX observed for 2 with respect to 1 is reasonably due to an optimal steric protection by the acetyl substituent, which may prevent unproductive inner-sphere reactivity. These results showcase a powerful strategy for the inhibition of the common deactivation pathways of [Cp*Ir(R-pica)X] catalysts for FA dehydrogenation, paving the way for the development of better performing hydrogen storage systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa