Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 162(3): 481-488, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36577872

RESUMO

PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Tomografia por Emissão de Pósitrons , Mutação , Aminoácidos/genética
2.
J Neurooncol ; 161(3): 643-654, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36750534

RESUMO

PURPOSE: In glioma patients, tumor development and multimodality therapy are associated with changes in health-related quality of life (HRQoL). It is largely unknown how different types and locations of tumor- and treatment-related brain lesions, as well as their relationship to white matter tracts and functional brain networks, affect HRQoL. METHODS: In 121 patients with pretreated gliomas of WHO CNS grades 3 or 4, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET, resting-state functional MRI (rs-fMRI) and self-reported HRQoL questionnaires (EORTC QLQ-C30/BN20) were obtained. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and lesions with pathologically increased FET uptake were delineated. Effects of tumor lateralization, involvement of white matter tracts or resting-state network nodes by different types of lesions and within-network rs-fMRI connectivity were analyzed in terms of their interaction with HRQoL scores. RESULTS: Right hemisphere gliomas were associated with significantly less favorable outcomes in physical, role, emotional and social functioning, compared with left-sided tumors. Most functional HRQoL scores correlated significantly with right-sided white-matter tracts involvement by T2/FLAIR hyperintensities and with loss of within-network functional connectivity of right-sided nodes. Tumors of the left hemisphere caused significantly more communication deficits. CONCLUSION: In pretreated high-grade gliomas, right hemisphere lesions are associated with reduced HRQoL scores in most functional domains except communication ability, compared to tumors of the left hemisphere. These relationships are mainly observed for T2/FLAIR lesions involving structural and functional networks in the right hemisphere. The data suggest that sparing the right hemisphere from treatment-related tissue damage may improve HRQoL in glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética , Qualidade de Vida , Tomografia por Emissão de Pósitrons , Glioma/patologia , Encéfalo/patologia , Organização Mundial da Saúde
3.
Adv Exp Med Biol ; 1416: 21-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432617

RESUMO

Contemporary neuroimaging of meningiomas has largely relied on computed tomography, and more recently magnetic resonance imaging. While these modalities are frequently used in nearly all clinical settings where meningiomas are treated for the routine diagnosis and follow-up of these tumors, advances in neuroimaging have provided novel opportunities for prognostication and treatment planning (including both surgical planning and radiotherapy planning). These include perfusion MRIs, and positron emission tomography (PET) imaging modalities. Here we will summarize the contemporary uses for neuroimaging in meningiomas, and future applications of novel, cutting edge imaging techniques that may be routinely implemented in the future to enable more precise treatment of these challenging tumors.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagem , Neuroimagem , Perfusão , Tomografia por Emissão de Pósitrons , Neoplasias Meníngeas/diagnóstico por imagem
4.
J Neurooncol ; 159(3): 519-529, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35852737

RESUMO

PURPOSE: To investigate the potential of radiomics applied to static clinical PET data using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) to differentiate treatment-related changes (TRC) from tumor progression (TP) in patients with gliomas. PATIENTS AND METHODS: One hundred fifty-one (151) patients with histologically confirmed gliomas and post-therapeutic progressive MRI findings according to the response assessment in neuro-oncology criteria underwent a dynamic amino acid PET scan using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET). Thereof, 124 patients were investigated on a stand-alone PET scanner (data used for model development and validation), and 27 patients on a hybrid PET/MRI scanner (data used for model testing). Mean and maximum tumor to brain ratios (TBRmean, TBRmax) were calculated using the PET data from 20 to 40 min after tracer injection. Logistic regression models were evaluated for the FET PET parameters TBRmean, TBRmax, and for radiomics features of the tumor areas as well as combinations thereof to differentiate between TP and TRC. The best performing models in the validation dataset were finally applied to the test dataset. The diagnostic performance was assessed by receiver operating characteristic analysis. RESULTS: Thirty-seven patients (25%) were diagnosed with TRC, and 114 (75%) with TP. The logistic regression model comprising the conventional FET PET parameters TBRmean and TBRmax resulted in an AUC of 0.78 in both the validation (sensitivity, 64%; specificity, 80%) and the test dataset (sensitivity, 64%; specificity, 80%). The model combining the conventional FET PET parameters and two radiomics features yielded the best diagnostic performance in the validation dataset (AUC, 0.92; sensitivity, 91%; specificity, 80%) and demonstrated its generalizability in the independent test dataset (AUC, 0.85; sensitivity, 81%; specificity, 70%). CONCLUSION: The developed radiomics classifier allows the differentiation between TRC and TP in pretreated gliomas based on routinely acquired static FET PET scans with a high diagnostic accuracy.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tirosina
5.
Methods ; 188: 112-121, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32522530

RESUMO

Over the last years, the amount, variety, and complexity of neuroimaging data acquired in patients with brain tumors for routine clinical purposes and the resulting number of imaging parameters have substantially increased. Consequently, a timely and cost-effective evaluation of imaging data is hardly feasible without the support of methods from the field of artificial intelligence (AI). AI can facilitate and shorten various time-consuming steps in the image processing workflow, e.g., tumor segmentation, thereby optimizing productivity. Besides, the automated and computer-based analysis of imaging data may help to increase data comparability as it is independent of the experience level of the evaluating clinician. Importantly, AI offers the potential to extract new features from the routinely acquired neuroimages of brain tumor patients. In combination with patient data such as survival, molecular markers, or genomics, mathematical models can be generated that allow, for example, the prediction of treatment response or prognosis, as well as the noninvasive assessment of molecular markers. The subdiscipline of AI dealing with the computation, identification, and extraction of image features, as well as the generation of prognostic or predictive mathematical models, is termed radiomics. This review article summarizes the basics, the current workflow, and methods used in radiomics with a focus on feature-based radiomics in neuro-oncology and provides selected examples of its clinical application.


Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Biomarcadores Tumorais/genética , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Humanos , Processamento de Imagem Assistida por Computador/tendências , Oncologia/métodos , Oncologia/tendências , Modelos Biológicos , Neuroimagem/tendências , Neurologia/métodos , Neurologia/tendências , Prognóstico , Medição de Risco/métodos , Medição de Risco/tendências , Resultado do Tratamento , Fluxo de Trabalho
6.
Hum Brain Mapp ; 42(13): 4122-4133, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-30367727

RESUMO

Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs-functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low-frequency fluctuations (fALFFs), as well as 2-[18F]fluoro-2-desoxy-d-glucose (FDG)-PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact-corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs-fMRI metrics and FDG-PET SUV measured in the DMN of the brain. The rs-fMRI metrics (ReHO, fALFF) and FDG-PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs  = 0.73, p = .01). FDG-PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.


Assuntos
Córtex Cerebral , Conectoma/métodos , Rede de Modo Padrão , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Biomarcadores , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Humanos
7.
Eur J Nucl Med Mol Imaging ; 48(6): 1956-1965, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33241456

RESUMO

PURPOSE: Perfusion-weighted MRI (PWI) and O-(2-[18F]fluoroethyl-)-l-tyrosine ([18F]FET) PET are both applied to discriminate tumor progression (TP) from treatment-related changes (TRC) in patients with suspected recurrent glioma. While the combination of both methods has been reported to improve the diagnostic accuracy, the performance of a sequential implementation has not been further investigated. Therefore, we retrospectively analyzed the diagnostic value of consecutive PWI and [18F]FET PET. METHODS: We evaluated 104 patients with WHO grade II-IV glioma and suspected TP on conventional MRI using PWI and dynamic [18F]FET PET. Leakage corrected maximum relative cerebral blood volumes (rCBVmax) were obtained from dynamic susceptibility contrast PWI. Furthermore, we calculated static (i.e., maximum tumor to brain ratios; TBRmax) and dynamic [18F]FET PET parameters (i.e., Slope). Definitive diagnoses were based on histopathology (n = 42) or clinico-radiological follow-up (n = 62). The diagnostic performance of PWI and [18F]FET PET parameters to differentiate TP from TRC was evaluated by analyzing receiver operating characteristic and area under the curve (AUC). RESULTS: Across all patients, the differentiation of TP from TRC using rCBVmax or [18F]FET PET parameters was moderate (AUC = 0.69-0.75; p < 0.01). A rCBVmax cutoff > 2.85 had a positive predictive value for TP of 100%, enabling a correct TP diagnosis in 44 patients. In the remaining 60 patients, combined static and dynamic [18F]FET PET parameters (TBRmax, Slope) correctly discriminated TP and TRC in a significant 78% of patients, increasing the overall accuracy to 87%. A subgroup analysis of isocitrate dehydrogenase (IDH) mutant tumors indicated a superior performance of PWI to [18F]FET PET (AUC = 0.8/< 0.62, p < 0.01/≥ 0.3). CONCLUSION: While marked hyperperfusion on PWI indicated TP, [18F]FET PET proved beneficial to discriminate TP from TRC when PWI remained inconclusive. Thus, our results highlight the clinical value of sequential use of PWI and [18F]FET PET, allowing an economical use of diagnostic methods. The impact of an IDH mutation needs further investigation.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Perfusão , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Tirosina
8.
J Neurooncol ; 155(1): 71-80, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34599479

RESUMO

PURPOSE: PET using radiolabeled amino acid [18F]-fluoro-ethyl-L-tyrosine (FET-PET) is a well-established imaging modality for glioma diagnostics. The biological tumor volume (BTV) as depicted by FET-PET often differs in volume and location from tumor volume of contrast enhancement (CE) in MRI. Our aim was to investigate whether a gross total resection of BTVs defined as < 1 cm3 of residual BTV (PET GTR) correlates with better oncological outcome. METHODS: We retrospectively analyzed imaging and survival data from patients with primary and recurrent WHO grade III or IV gliomas who underwent FET-PET before surgical resection. Tumor overlap between FET-PET and CE was evaluated. Completeness of FET-PET resection (PET GTR) was calculated after superimposition and semi-automated segmentation of pre-operative FET-PET and postoperative MRI imaging. Survival analysis was performed using the Kaplan-Meier method and the log-rank test. RESULTS: From 30 included patients, PET GTR was achieved in 20 patients. Patients with PET GTR showed improved median OS with 19.3 compared to 13.7 months for patients with residual FET uptake (p = 0.007; HR 0.3; 95% CI 0.12-0.76). This finding remained as independent prognostic factor after performing multivariate analysis (HR 0.19, 95% CI 0.06-0.62, p = 0.006). Other survival influencing factors such as age, IDH-mutation, MGMT promotor status, and adjuvant treatment modalities were equally distributed between both groups. CONCLUSION: Our results suggest that PET GTR improves the OS in patients with WHO grade III or IV gliomas. A multimodal imaging approach including FET-PET for surgical planning in newly diagnosed and recurrent tumors may improve the oncological outcome in glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Glioblastoma , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Tirosina , Organização Mundial da Saúde
9.
Br J Neurosurg ; 35(6): 736-742, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31407920

RESUMO

OBJECTIVE: Vaccination therapy using tumour antigen-loaded, autologous dendritic cells (DC) is a promising therapeutic approach alongside standard treatment for glioblastoma (GBM). However, reliable diagnostic criteria regarding therapy monitoring are not established. Here, we analysed the impact of additional 18F-fluoroethyl-tyrosine positron emission tomography (18F-FET PET) imaging following DC vaccination therapy. METHODS: We analysed data of GBM patients who received DC vaccination therapy. Following MRI diagnosis of tumour recurrence, additional static and dynamic 18F-FET PET imaging was performed. Vaccination was performed five times by intradermal injections, either weekly between concomitant radio/-chemotherapy and intermittent chemotherapy or after tumour recurrence, before re-radiation therapy. MRI and 18F-FET PET results were compared and correlated with clinical data. RESULTS: Between 2003 and 2016, 5 patients were identified who received DC vaccination and 18F-FET PET imaging (1 female/4 males; mean age: 44 ± 14 y). 3/5 patients showed congruent results of tumour progression. In three patients 18F-FET PET indicated treatment related changes, which was in contrast to MRI findings that indicated tumour progression. In these patients 18F-FET PET results could be confirmed by either neuropathological diagnosis or according to the RANO criteria. CONCLUSIONS: Despite the small patients number our results indicate an additional impact of 18F-FET PET for monitoring outcome following vaccination therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Células Dendríticas , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Imunoterapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/terapia , Tomografia por Emissão de Pósitrons , Tirosina , Vacinação
10.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209129

RESUMO

Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and plays a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been implicated as driver of disease progression and is observed in ALS patients, as well as in the transgenic SOD1G93A mouse model. Here, we explore and validate the therapeutic potential of the d-enantiomeric peptide RD2RD2 upon oral administration in SOD1G93A mice. Transgenic mice were treated daily with RD2RD2 or placebo for 10 weeks and phenotype progression was followed with several behavioural tests. At the end of the study, plasma cytokine levels and glia cell markers in brain and spinal cord were analysed. Treatment resulted in a significantly increased performance in behavioural and motor coordination tests and a decelerated neurodegenerative phenotype in RD2RD2-treated SOD1G93A mice. Additionally, we observed retardation of the average disease onset. Treatment of SOD1G93A mice led to significant reduction in glial cell activation and a rescue of neurons. Analysis of plasma revealed normalisation of several cytokines in samples of RD2RD2-treated SOD1G93A mice towards the levels of non-transgenic mice. In conclusion, these findings qualify RD2RD2 to be considered for further development and testing towards a disease modifying ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores/enzimologia , Superóxido Dismutase/metabolismo , Administração Oral , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Peptídeos , Superóxido Dismutase/genética
11.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209113

RESUMO

Understanding the physiopathology of Alzheimer's disease (AD) has improved substantially based on studies of mouse models mimicking at least one aspect of the disease. Many transgenic lines have been established, leading to amyloidosis but lacking neurodegeneration. The aim of the current study was to generate a novel mouse model that develops neuritic plaques containing the aggressive pyroglutamate modified amyloid-ß (pEAß) species in the brain. The TAPS line was developed by intercrossing of the pEAß-producing TBA2.1 mice with the plaque-developing line APPswe/PS1ΔE9. The phenotype of the new mouse line was characterized using immunostaining, and different cognitive and general behavioral tests. In comparison to the parental lines, TAPS animals developed an earlier onset of pathology and increased plaque load, including striatal pEAß-positive neuritic plaques, and enhanced neuroinflammation. In addition to abnormalities in general behavior, locomotion, and exploratory behavior, TAPS mice displayed cognitive deficits in a variety of tests that were most pronounced in the fear conditioning paradigm and in spatial learning in comparison to the parental lines. In conclusion, the combination of a pEAß- and a plaque-developing mouse model led to an accelerated amyloid pathology and cognitive decline in TAPS mice, qualifying this line as a novel amyloidosis model for future studies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Camundongos
12.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805709

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by selective neuronal death in the brain stem and spinal cord. The cause is unknown, but an increasing amount of evidence has firmly certified that neuroinflammation plays a key role in ALS pathogenesis. Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and has been implicated as driver of disease progression. Here, we describe a treatment study demonstrating the therapeutic potential of a tandem version of the well-known all-d-peptide RD2 (RD2RD2) in a transgenic mouse model of ALS (SOD1*G93A). Mice were treated intraperitoneally for four weeks with RD2RD2 vs. placebo. SOD1*G93A mice were tested longitudinally during treatment in various behavioural and motor coordination tests. Brain and spinal cord samples were investigated immunohistochemically for gliosis and neurodegeneration. RD2RD2 treatment in SOD1*G93A mice resulted not only in a reduction of activated astrocytes and microglia in both the brain stem and lumbar spinal cord, but also in a rescue of neurons in the motor cortex. RD2RD2 treatment was able to slow progression of the disease phenotype, especially the motor deficits, to an extent that during the four weeks treatment duration, no significant progression was observed in any of the motor experiments. Based on the presented results, we conclude that RD2RD2 is a potential therapeutic candidate against ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Oligopeptídeos/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Anti-Inflamatórios/química , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Destreza Motora/efeitos dos fármacos , Destreza Motora/fisiologia , Proteínas Mutantes/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Oligopeptídeos/química , Fenótipo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
13.
Neuroimage ; 221: 117160, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679251

RESUMO

The use of hybrid PET/MR imaging facilitates the simultaneous investigation of challenge-related changes in ligand binding to neuroreceptors using PET, while concurrently measuring neuroactivation or blood flow with MRI. Having attained a steady state of the PET radiotracer using a bolus-infusion protocol, it is possible to observe alterations in ligand neuroreceptor binding through changes in distribution volumes. Here, we present an iterative procedure for establishing an administration scheme to obtain steady state [11C]flumazenil concentrations in grey matter in the human brain. In order to achieve a steady state in the shortest possible time, the bolus infusion ratio from a previous examination was adapted to fit the subsequent examination. 17 male volunteers were included in the study. Boli and infusions with different weightings were given to the subjects and were characterised by kbol values from 74 â€‹min down to 42 â€‹min. Metabolite analysis was used to ascertain the value of unmetabolised flumazenil in the plasma, and PET imaging was used to assess its binding in the grey matter. The flumazenil time-activity curves (TACs) in the brain were decomposed into activity contributions from pure grey and white matter and analysed for 12 â€‹vol of interest (VOIs). The curves highlighted a large variability in metabolic rates between the subjects, with kbol â€‹= â€‹54.3 â€‹min being a reliable value to provide flumazenil equilibrium conditions in the majority of the VOIs and cases. The distribution volume of flumazenil in all 12 VOIs was determined.


Assuntos
Radioisótopos de Carbono/administração & dosagem , Flumazenil , Moduladores GABAérgicos , Substância Cinzenta , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Células Receptoras Sensoriais , Substância Branca , Adulto , Flumazenil/administração & dosagem , Flumazenil/sangue , Flumazenil/farmacocinética , Moduladores GABAérgicos/administração & dosagem , Moduladores GABAérgicos/sangue , Moduladores GABAérgicos/farmacocinética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Humanos , Masculino , Imagem Multimodal , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo , Adulto Jovem
14.
Hum Brain Mapp ; 41(14): 3970-3983, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32588936

RESUMO

Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non-invasive techniques are increasingly relevant with regard to pre-operative risk-assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre-operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non-invasive motor cortex mapping technique to approximate the gold standard DCS results.


Assuntos
Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Potencial Evocado Motor/fisiologia , Imageamento por Ressonância Magnética/normas , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neuronavegação/normas , Procedimentos Neurocirúrgicos/normas , Estimulação Magnética Transcraniana/normas , Adulto , Idoso , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Microcirurgia , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Cuidados Pré-Operatórios/normas
15.
Hum Brain Mapp ; 41(10): 2762-2781, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150317

RESUMO

Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11 C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND ) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission-in particularly mGluR5-as a possible connection to a shared vulnerability.


Assuntos
Núcleo Caudado , Disfunção Cognitiva , Receptor de Glutamato Metabotrópico 5/metabolismo , Esquizofrenia , Lobo Temporal , Adulto , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Núcleo Caudado/fisiopatologia , Doença Crônica , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oximas/farmacocinética , Tomografia por Emissão de Pósitrons , Piridinas/farmacocinética , Esquizofrenia/complicações , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Fumar/metabolismo , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Lobo Temporal/fisiopatologia
16.
NMR Biomed ; 33(10): e4361, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32696547

RESUMO

Sodium MRI is a promising method for assessing the metabolic properties of brain tumours. In a recent study, a strong relationship between semi-quantitative abnormalities in sodium MRI and the mutational status of the isocitrate dehydrogenase enzyme (IDH) with untreated cerebral gliomas was observed. Here, sodium relaxometry in brain tumour tissue was investigated in relation to molecular markers in order to reveal quantitative sodium tissue parameters and the differences between healthy tissue and brain tumour. The previous semi-quantitative approach is extended by use of suitable relaxometry methods accompanied by numerical simulation to achieve detailed quantitative analysis of intra- and extracellular sodium concentration using an enhanced SISTINA sequence at 4 T. Using optimised techniques, biexponential sodium relaxation times in tumour (T*2f , T*2s ) and in healthy contralateral brain tissue (T*2f,CL , T*2s,CL ) were estimated in 10 patients, along with intracellular sodium molar fractions (χ, χCL ), volume fractions (η, ηCL ) and concentrations (ρin , ρin,CL ). The total sodium tissue concentrations (ρT , ρT,CL ) were also estimated. The ratios T*2f /T*2f,CL (P = .05), η/ηCL (P = .02) and χ/χCL (P = .02) were significantly lower in IDH mutated than in IDH wildtype gliomas (n = 4 and n = 5 patients, respectively). The Wilcoxon rank-sum test was used to compare sodium MRI parameters in patients with and without IDH mutation. Thus, quantitative analysis of relaxation rates, intra- and extracellular sodium concentrations, intracellular molar and volume fractions based on enhanced SISTINA confirmed a relationship between abnormalities in sodium parameters and the IDH mutational status in cerebral gliomas, hence catering for the potential to provide further insights into the status of the disease.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Sódio/química , Adulto , Neoplasias Encefálicas/patologia , Simulação por Computador , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Fatores de Tempo , Tirosina/análogos & derivados
17.
Eur J Nucl Med Mol Imaging ; 47(6): 1486-1495, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32034446

RESUMO

PURPOSE: Integrated histomolecular diagnostics of gliomas according to the World Health Organization (WHO) classification of 2016 has refined diagnostic accuracy and prediction of prognosis. This study aimed at exploring the prognostic value of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in newly diagnosed, histomolecularly classified astrocytic gliomas of WHO grades III or IV. METHODS: Before initiation of treatment, dynamic FET PET imaging was performed in patients with newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA). Static FET PET parameters such as maximum and mean tumour/brain ratios (TBRmax/mean), the metabolic tumour volume (MTV) as well as the dynamic FET PET parameters time-to-peak (TTP) and slope, were obtained. The predictive ability of FET PET parameters was evaluated concerning the progression-free and overall survival (PFS, OS). Using ROC analyses, threshold values for FET PET parameters were obtained. Subsequently, univariate Kaplan-Meier and multivariate Cox regression survival analyses were performed to assess the predictive power of these parameters for survival. RESULTS: Sixty patients (45 GBM and 15 AA patients) of two university centres were retrospectively identified. Patients with isocitrate dehydrogenase (IDH)-mutant or O6-methylguanine-DNA-methyltransferase (MGMT) promoter-methylated tumours had a significantly longer PFS and OS (both P < 0.001). Furthermore, ROC analysis of IDH-wildtype glioma patients (n = 45) revealed that a TTP > 25 min (AUC, 0.90; sensitivity, 90%; specificity, 87%; P < 0.001) was highly prognostic for longer PFS (13 vs. 7 months; P = 0.005) and OS (29 vs. 12 months; P < 0.001). In contrast, at a lower level of significance, TBRmax, TBRmean, and MTV were only prognostic for longer OS (P = 0.004, P = 0.038, and P = 0.048, respectively). Besides complete resection and a methylated MGMT promoter, TTP remained significant in multivariate survival analysis (all P ≤ 0.02), indicating an independent predictor for OS. CONCLUSIONS: Our data suggest that dynamic FET PET allows the identification of patients with longer OS among patients with newly diagnosed IDH-wildtype GBM and AA.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Humanos , Isocitrato Desidrogenase/genética , Gradação de Tumores , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Tirosina
18.
Molecules ; 25(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213992

RESUMO

The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Aminoácidos , Glioma/diagnóstico por imagem , Humanos , Imagem Molecular/métodos
19.
Neurobiol Dis ; 124: 36-45, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30391539

RESUMO

Alzheimer's disease, a multifactorial incurable disorder, is mainly characterised by progressive neurodegeneration, extracellular accumulation of amyloid-ß protein (Aß), and intracellular aggregation of hyperphosphorylated tau protein. During the last years, Aß oligomers have been claimed to be the disease causing agent. Consequently, development of compounds that are able to disrupt already existing Aß oligomers is highly desirable. We developed d-enantiomeric peptides, consisting solely of d-enantiomeric amino acid residues, for the direct and specific elimination of toxic Aß oligomers. The drug candidate RD2 did show high oligomer elimination efficacy in vitro and the in vivo efficacy of RD2 was demonstrated in treatment studies by enhanced cognition in transgenic mouse models of amyloidosis. Here, we report on the in vitro and in vivo efficacy of the compound towards pyroglutamate-Aß, a particular aggressive Aß species. Using the transgenic TBA2.1 mouse model, which develops pyroglutamate-Aß(3-42) induced neurodegeneration, we are able to show that oral RD2 treatment resulted in a significant deceleration of the progression of the phenotype. The in vivo efficacy against this highly toxic Aß species further validates RD2 as a drug candidate for the therapeutic use in humans.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Administração Oral , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Fenótipo , Estereoisomerismo
20.
Eur J Nucl Med Mol Imaging ; 46(3): 591-602, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30327856

RESUMO

PURPOSE: Areas of contrast enhancement (CE) on MRI are usually the target for resection or radiotherapy target volume definition in glioblastomas. However, the solid tumour mass may extend beyond areas of CE. Amino acid PET can detect parts of the tumour that show no CE. We systematically investigated tumour volumes delineated by amino acid PET and MRI in patients with newly diagnosed, untreated glioblastoma. METHODS: Preoperatively, 50 patients with neuropathologically confirmed glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, and fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced MRI. Areas of CE were manually segmented. FET PET tumour volumes were segmented using a tumour-to-brain ratio of ≥1.6. The percentage overlap volumes, and Dice and Jaccard spatial similarity coefficients (DSC, JSC) were calculated. FLAIR images were evaluated visually. RESULTS: In 43 patients (86%), the FET tumour volume was significantly larger than the CE volume (21.5 ± 14.3 mL vs. 9.4 ± 11.3 mL; P < 0.001). Forty patients (80%) showed both increased uptake of FET and CE. In these 40 patients, the spatial similarity between FET uptake and CE was low (mean DSC 0.39 ± 0.21, mean JSC 0.26 ± 0.16). Ten patients (20%) showed no CE, and one of these patients showed no FET uptake. In five patients (10%), increased FET uptake was present outside areas of FLAIR hyperintensity. CONCLUSION: Our results show that the metabolically active tumour volume delineated by FET PET is significantly larger than tumour volume delineated by CE. Furthermore, the results strongly suggest that the information derived from both imaging modalities should be integrated into the management of patients with newly diagnosed glioblastoma.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Carga Tumoral , Tirosina/análogos & derivados , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa