Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 270: 110885, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721323

RESUMO

A nine-year (2010-2018) field study in the Debre Mawi watershed was conducted to understand the effect of governmentally-imposed and farmer-initiated conservation practices. The watershed is in the sub-humid Ethiopian Highlands which experience high and increasing erosion rates despite years of conservation efforts. Consequently, reservoirs are filling up with sediment and soil degradation is enhanced, calling for the evaluation of conservation practices currently in use. The few past long-term experimental studies on structural practices are inconclusive. In addition, only anecdotal information is available for streamflow and sediment loss. Precipitation, stream discharge, and suspended sediment concentrations were recorded manually in the Debre Mawi watershed during the nine-year period. Groundwater depth and total saturated area measurements were taken for selected periods. From 2012 to 2014, government-mandated conservation practices were constructed, which consisted of 50-cm-deep infiltration furrows with bunds downslope. These furrows were filled in with sediment by 2018. At the same time, the acreage of eucalyptus trees planted by farmers on the most vulnerable lands tripled to 5% of the total area with most trees fully grown in 2018. Runoff coefficients and sediment concentrations decreased steadily throughout the nine years. In the saturated bottomlands, the observations suggested that government-sponsored infiltration furrows in the saturated bottomlands were ineffective and may concentrate flows and enhance gully erosion, while eucalyptus trees appear effective. The results of this observational study point to both the potential benefits of conservation practices in this sub-humid tropical highland region and to emerging long-term risks. If structural conservation is to be pursued in watersheds like Debre Mawi, due attention must be given to the safe removal of excess water from the valley bottoms. The vegetative farmer-initiated practice of planting eucalyptus trees effectively reduced streamflow and erosion, but at the same time, might dry up wells during the dry monsoon phase which should be investigated further.


Assuntos
Conservação dos Recursos Hídricos , Solo , Conservação dos Recursos Naturais , Monitoramento Ambiental , Etiópia , Sedimentos Geológicos , Medição de Risco
2.
J Environ Qual ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816346

RESUMO

The Lower Mississippi River Basin-Long-Term Agroecosystem Research Site (LMRB-LTAR) encompasses six states from Missouri to the Gulf of Mexico and is coordinated by the USDA-ARS National Sedimentation Laboratory, Oxford, MS. The overarching goal of LTAR is to assess regionally diverse and geographically scalable farming practices for enhanced sustainability of agroecosystem goods and services under changing environment and resource-use conditions. The LMRB-LTAR overall goal is to assess sustainable row crop agricultural production systems that integrate regional environmental and socioeconomic needs. Primary row crops in the region include soybeans, corn, cotton, rice, and sugarcane with crop rotations influenced by commodity crop price and other factors. The field-scale common experiment (CE) includes four row crop farms (26-101 ha) established in 2021 and 2023. Three fields are managed with alternative practices, including reduced tillage, cover crops, and automated prescription irrigation, and three fields are managed with prevailing farming practices, consisting of conventional tillage, no cover crop, and nonprescription irrigation. Treatment effects on crop productivity, soil quality, water use efficiency, water quality, and carbon storage are assessed. Research from the LMRB CE will deliver outcomes linked to overarching LTAR network goals, including innovative agricultural systems, strengthened partnerships, data management technologies, and precision environmental tools.

3.
Sci Total Environ ; 858(Pt 3): 160027, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356757

RESUMO

Sustainable land management (SLM) is widely recognized as the key to reducing rates of land degradation, and preventing desertification. Many efforts have been made worldwide by various stakeholders to adopt and/or develop various SLM practices. Nevertheless, a comprehensive review on the spatial distribution, prospects, and challenges of SLM practices and research is lacking. To address this gap, we gathered information from a global SLM database provided by the World Overview of Conservation Approaches and Technologies (WOCAT) and two bibliographic databases of academic research. Over 1900 SLM practices and 1181 academic research papers from 129 and 90 countries were compiled and analyzed. Relatively better SLM dissemination was observed in dry subhumid countries and countries with medium scores on the Human Development Index (HDI), whereas dissemination and research were both lower in humid countries with low HDI values. Cropland was the main land use type targeted in both dissemination and research; degradation caused by water erosion and mitigation aimed at water erosion were also the main focus areas. Other dominant land use types (e.g., grazing) and SLM purposes (e.g., economic benefits) have received relatively less research attention compared to their dissemination. Overall, over 75 % of the 60 countries experiencing high soil erosion rates (>10 t ha-1 yr-1) also have low HDI scores, as well as poor SLM dissemination and research implying the limited evidence-based SLM dissemination in these countries. The limitation of research evidence can be addressed in the short term through integrating existing scientific research and SLM databases by adopting the proposed Research Evidence for SLM framework. There is, however, a great need for additional detailed studies of country-specific SLM challenges and prospects to create appropriate evidence-based SLM dissemination strategies to achieve multiple SLM benefits.


Assuntos
Conservação dos Recursos Naturais
4.
Water (Basel) ; 11(5): 1-1024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583124

RESUMO

Urbanization can increase sheet, rill, gully, and channel erosion. We quantified the sediment budget of the Los Laureles Canyon watershed (LLCW), which is a mixed rural-urbanizing catchment in Northwestern Mexico, using the AnnAGNPS model and field measurements of channel geometry. The model was calibrated with five years of observed runoff and sediment loads and used to evaluate sediment reduction under a mitigation scenario involving paving roads in hotspots of erosion. Calibrated runoff and sediment load had a mean-percent-bias of 28.4 and - 8.1, and root-mean-square errors of 85% and 41% of the mean, respectively. Suspended sediment concentration (SSC) collected at different locations during one storm-event correlated with modeled SSC at those locations, which suggests that the model represented spatial variation in sediment production. Simulated gully erosion represents 16%-37% of hillslope sediment production, and 50% of the hillslope sediment load is produced by only 23% of the watershed area. The model identifies priority locations for sediment control measures, and can be used to identify tradeoffs between sediment control and runoff production. Paving roads in priority areas would reduce total sediment yield by 30%, but may increase peak discharge moderately (1.6%-21%) at the outlet.

5.
Earth Surf Process Landf ; 43(7): 1465-1477, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245539

RESUMO

Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure-from-Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100-300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross-sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross-sections. Channel erosion due to urbanization accounts for approximately 25-40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one-third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel.

6.
Geosciences (Basel) ; 8(4): 137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147946

RESUMO

Modelling gully erosion in urban areas is challenging due to difficulties with equifinality and parameter identification, which complicates quantification of management impacts on runoff and sediment production. We calibrated a model (AnnAGNPS) of an ephemeral gully network that formed on unpaved roads following a storm event in an urban watershed (0.2 km2) in Tijuana, Mexico. Latin hypercube sampling was used to create 500 parameter ensembles. Modelled sediment load was most sensitive to the Soil Conservation Service (SCS) curve number, tillage depth (Td), and critical shear stress (τc). Twenty-one parameter ensembles gave acceptable error (behavioural models), though changes in parameters governing runoff generation (SCS curve number, Manning's n) were compensated by changes in parameters describing soil properties (TD, τc, resulting in uncertainty in the optimal parameter values. The most suitable parameter combinations or "behavioural models" were used to evaluate uncertainty under management scenarios. Paving the roads increased runoff by 146-227%, increased peak discharge by 178-575%, and decreased sediment load by 90-94% depending on the ensemble. The method can be used in other watersheds to simulate runoff and gully erosion, to quantify the uncertainty of model-estimated impacts of management activities on runoff and erosion, and to suggest critical field measurements to reduce uncertainties in complex urban environments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa