Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Dev Dyn ; 252(2): 294-304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36065982

RESUMO

BACKGROUND: The thyroid hormones-thyroxine (T4) and 3,5,3'triiodothyronine (T3)-regulate the development of the central nervous system (CNS) in vertebrates by acting in different cell types. Although several T3 target genes have been identified in the brain, the changes in the transcriptome in response to T3 specifically in neural stem and progenitor cells (NSPCs) during the early steps of NSPCs activation and neurogenesis have not been studied in vivo. Here, we characterized the transcriptome of FACS-sorted NSPCs in response to T3 during Xenopus laevis metamorphosis. RESULTS: We identified 1252 upregulated and 726 downregulated genes after 16 hours of T3 exposure. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that T3-upregulated genes were significantly enriched in rRNA processing and maturation, protein folding, ribosome biogenesis, translation, mitochondrial function, and proteasome. These results suggest that NSPCs activation induced by T3 is characterized by an early proteome remodeling through the synthesis of the translation machinery and the degradation of proteins by the proteasome. CONCLUSION: This work provides new insights into the dynamics of activation of NPSCs in vivo in response to T3 during a critical period of neurogenesis in the metamorphosis.


Assuntos
Células-Tronco Neurais , Complexo de Endopeptidases do Proteassoma , Animais , Xenopus laevis , Complexo de Endopeptidases do Proteassoma/genética , Hormônios Tireóideos/metabolismo , Células-Tronco Neurais/metabolismo , Perfilação da Expressão Gênica , Metamorfose Biológica/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
Am J Bot ; 110(11): e16249, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792319

RESUMO

PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.


Assuntos
Briófitas , Hepatófitas , Filogenia , Briófitas/genética , Plantas/genética , Hepatófitas/genética
3.
Cell Mol Life Sci ; 79(5): 239, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416520

RESUMO

Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Sistema Nervoso Central/metabolismo , Humanos , Mamíferos , Mitocôndrias/metabolismo , Regeneração Nervosa , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal/fisiologia
4.
Mol Cell Proteomics ; 17(4): 592-606, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358338

RESUMO

The capacity to regenerate the spinal cord after an injury is a coveted trait that only a limited group of nonmammalian organisms can achieve. In Xenopus laevis, this capacity is only present during larval or tadpole stages, but is absent during postmetamorphic frog stages. This provides an excellent model for comparative studies between a regenerative and a nonregenerative stage to identify the cellular and molecular mechanisms that explain this difference in regenerative potential. Here, we used iTRAQ chemistry to obtain a quantitative proteome of the spinal cord 1 day after a transection injury in regenerative and nonregenerative stage animals, and used sham operated animals as controls. We quantified a total of 6,384 proteins, with 172 showing significant differential expression in the regenerative stage and 240 in the nonregenerative stage, with an overlap of only 14 proteins. Functional enrichment analysis revealed that although the regenerative stage downregulated synapse/vesicle and mitochondrial proteins, the nonregenerative stage upregulated lipid metabolism proteins, and downregulated ribosomal and translation control proteins. Furthermore, STRING network analysis showed that proteins belonging to these groups are highly interconnected, providing interesting candidates for future functional studies. Data are available via ProteomeXchange with identifier PXD006993.


Assuntos
Proteínas de Anfíbios/metabolismo , Regeneração/fisiologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/fisiologia , Xenopus laevis/metabolismo , Animais , Larva/metabolismo , Proteômica , Traumatismos da Medula Espinal/veterinária
5.
Dev Dyn ; 248(10): 969-978, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31397023

RESUMO

BACKGROUND: Lin28 regulates stem cell biology and developmental timing. At the molecular level Lin28 inhibits the biogenesis of the micro RNA let-7 and directly controls the transcription and translation of several genes. In Xenopus, Lin28 overexpression delays metamorphosis and affects the expression of genes of the thyroid hormone (TH) axis. The TH carrier albumin, synthesized by the liver, is down-regulated in limbs and tail after Lin28 overexpression. The molecular mechanisms underlying the interaction between Lin28, let-7, and the hypothalamus-pituitary-thyroid gland (HPT) axis are unknown. RESULTS: We found that precursor and mature forms of let-7 increase during Xenopus metamorphosis. In the liver, lin28b is down-regulated and albumin is up-regulated during metamorphosis. Overexpression of a truncated form of Lin28a (Lin28aΔC), which has been shown not to interact with RNA helicase A to regulate translation, delays metamorphosis, indicating that the translational regulation domain is not required to inhibit the HPT axis. Importantly, both full length Lin28a and Lin28aΔC block the increase of albumin mRNA in the liver independently of changes in TH signaling. CONCLUSIONS: These results suggest that Lin28 delays metamorphosis through regulation of let-7 and that the decrease of the TH carrier albumin is one of the early changes after Lin28 overexpression.


Assuntos
Albuminas/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , MicroRNAs/antagonistas & inibidores , Biossíntese de Proteínas , Domínios Proteicos , Proteínas de Ligação a RNA/farmacologia , Hormônios Tireóideos/metabolismo , Proteínas de Xenopus/farmacologia , Xenopus laevis
6.
Dev Biol ; 425(2): 142-151, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28359807

RESUMO

Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders.


Assuntos
Metamorfose Biológica/genética , Proteínas de Ligação a RNA/genética , Hormônios Tireóideos/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/genética , Amputação Cirúrgica , Animais , Extremidades/cirurgia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Modelos Biológicos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regeneração/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/farmacologia , Proteínas de Xenopus/metabolismo
7.
Dev Biol ; 416(1): 3-17, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27297887

RESUMO

Developmental transitions include molting in some invertebrates and the metamorphosis of insects and amphibians. While the study of Caenorhabditis elegans larval transitions was crucial to determine the genetic control of these transitions, Drosophila melanogaster and Xenopus laevis have been classic models to study the role of hormones in metamorphosis. Here we review how heterochronic genes (lin-4, let-7, lin-28, lin-41), hormones (dafachronic acid, ecdysone, thyroid hormone) and the environment regulate developmental transitions. Recent evidence suggests that some heterochronic genes also regulate transitions in higher organisms that they are controlled by hormones involved in metamorphosis. We also discuss evidence demonstrating that heterochronic genes and hormones regulate the proliferation and differentiation of embryonic and neural stem cells. We propose the hypothesis that developmental transitions are regulated by an evolutionary conserved mechanism in which heterochronic genes and hormones interact to control stem/progenitor cells proliferation, cell cycle exit, quiescence and differentiation and determine the proper timing of developmental transitions. Finally, we discuss the relevance of these studies to understand post-embryonic development, puberty and regeneration in humans.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Morfogênese/genética , Xenopus laevis/crescimento & desenvolvimento , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Hormônios/fisiologia , Humanos , Células-Tronco/fisiologia , Xenopus laevis/genética
8.
Mol Phylogenet Evol ; 107: 16-26, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27744015

RESUMO

Frullania subgenus Microfrullania is a clade of ca. 15 liverwort species occurring in Australasia, Malesia, and southern South America. We used combined nuclear and chloroplast sequence data from 265 ingroup accessions to test species circumscriptions and estimate the biogeographic history of the subgenus. With dense infra-specific sampling, we document an important role of long-distance dispersal in establishing phylogeographic patterns of extant species. At deeper time scales, a combination of phylogenetic analyses, divergence time estimation and ancestral range estimation were used to reject vicariance and to document the role of long-distance dispersal in explaining the evolution and biogeography of the clade across the southern Hemisphere. A backbone phylogeny for the subgenus is proposed, providing insight into evolution of morphological patterns and establishing the basis for an improved sectional classification of species within Microfrullania. Several species complexes are identified, the presence of two undescribed but genetically and morphologically distinct species is noted, and previously neglected names are discussed.


Assuntos
Frullania/classificação , Australásia , Evolução Biológica , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Frullania/anatomia & histologia , Frullania/genética , Loci Gênicos , Filogenia , Filogeografia , Análise de Sequência de DNA , América do Sul
9.
Dev Biol ; 408(2): 229-43, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25797152

RESUMO

Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2(/)3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2(/)3(+) cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2(/)3(+) neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets.


Assuntos
Fatores de Transcrição SOXB1/fisiologia , Regeneração da Medula Espinal/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metamorfose Biológica , Modelos Animais , Modelos Neurológicos , Neurogênese , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/genética , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética
10.
BMC Genomics ; 17: 161, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26925848

RESUMO

BACKGROUND: The clawed African frog Xenopus laevis has been one of the main vertebrate models for studies in developmental biology. However, for genetic studies, Xenopus tropicalis has been the experimental model of choice because it shorter life cycle and due to a more tractable genome that does not result from genome duplication as in the case of X. laevis. Today, although still organized in a large number of scaffolds, nearly 85% of X. tropicalis and 89% of X. laevis genomes have been sequenced. There is expectation for a comparative physical map that can be used as a Rosetta Stone between X. laevis genetic studies and X. tropicalis genomic research. RESULTS: In this work, we have mapped using coarse-grained alignment the 18 chromosomes of X. laevis, release 9.1, on the 10 reference scaffolds representing the haploid genome of X. tropicalis, release 9.0. After validating the mapping with theoretical data, and estimating reference averages of genome sequence identity, 37 to 44% between the two species, we have carried out a synteny analysis for 2,112 orthologous genes. We found that 99.6% of genes are in the same organization. CONCLUSIONS: Taken together, our results make possible to establish the correspondence between 62 and 65.5% of both genomes, percentage of identity, synteny and automatic annotation of transcripts of both species, providing a new and more comprehensive tool for comparative analysis of these two species, by allowing to bridge molecular genetics data among them.


Assuntos
Mapeamento Físico do Cromossomo , Sintenia , Xenopus laevis/genética , Xenopus/genética , Animais , Hibridização Genômica Comparativa , Rearranjo Gênico , Genoma , Alinhamento de Sequência , Xenopus/classificação
11.
Development ; 140(14): 3008-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23760952

RESUMO

Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2(Lp) compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2(Lp) mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2(Lp/+) enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2(Lp/+) embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2(Lp/Lp)) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos.


Assuntos
Polaridade Celular , Embrião de Mamíferos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/citologia , Sindecana-4/metabolismo , Via de Sinalização Wnt , Animais , Embrião de Mamíferos/citologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Sindecana-4/genética , Cicatrização , Xenopus
12.
Genesis ; 51(8): 529-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760835

RESUMO

Unlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative-permissive environment that the mammalian spinal cord appears to be lacking. Evidence for the regenerative nonpermissive environment in mammals is given by the fact that they possess neural stem/progenitor cells, which transplanted into permissive environments are able to give rise to new neurons, whereas in the nonpermissive spinal cord they are unable to do so. We discuss the traits that are favorable for regeneration, comparing what happens in mammals with each regenerative organism, aiming to describe and identify the key differences that allow regeneration. This comparison should lead us toward finding how to promote regeneration in organisms that are unable to do so.


Assuntos
Regeneração Nervosa , Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Humanos , Mamíferos , Neurogênese , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
13.
Nat Cell Biol ; 8(5): 492-500, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604063

RESUMO

Early shaping of Xenopus laevis embryos occurs through convergent and extension movements, a process that is driven by intercalation of polarized dorsal mesodermal cells and regulated by non-canonical Wnt signalling. Here, we have identified Xenopus syndecan-4 (xSyn4), a cell-surface transmembrane heparan sulphate proteoglycan. At the gastrula stage, xSyn4 is expressed in the involuting dorsal mesoderm and the anterior neuroectoderm. Later, it is found in the pronephros, branchial arches, brain and tailbud. Both gain- and loss-of-function of xSyn4 impaired convergent extension movements in Xenopus embryos and in activin-treated ectodermal explants. xSyn4 interacts functionally and biochemically with the Wnt receptor Frizzled7 (xFz7) and its signal transducer Dishevelled (xDsh). Furthermore, xSyn4 is necessary and sufficient for translocation of xDsh to the plasma membrane - a landmark in the activation of non-canonical Wnt signalling. Our results suggest that the ability of xSyn4 to translocate xDsh is regulated by fibronectin, a component of the extracellular matrix required for proper convergent extension movements. We propose a model where xSyn4 and fibronectin cooperate with xFz7 and Wnt in the specific activation of the non-canonical Wnt pathway.


Assuntos
Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteoglicanas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Xenopus laevis/embriologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Desgrenhadas , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Biológicos , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Filogenia , Ligação Proteica , Proteoglicanas/química , Proteoglicanas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sindecana-4 , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
14.
Genesis ; 50(3): 260-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22253037

RESUMO

Here, we report and characterize deep sequencing data and bioinformatics analysis of small RNAs from Xenopus tropicalis gastrula. A total of 17,553,124 reads with perfect match to the genome derived from 2,616,053 unique sequences were identified. Seventy-seven percent of theses sequences were not found in previous reports from X. tropicalis oocytes and somatic tissues. Bioinformatics analyses indicate that a large fraction of the small RNAs are PIWI-interacting RNAs. Up to 23.9% of small RNAs mapped to transposable elements and 27% to genic regions. Most of abundant transposable derived small RNAs are found in oocyte and gastrula libraries, suggesting that transposon needs to be silenced also during early development. Additionally, miRNAs were identified and many of them are not present in oocytes, suggesting that miRNA expression is stage specific. To the best of our knowledge, this is the first high throughput data release and bioinformatics characterization of small RNAs during Xenopus development.


Assuntos
Gástrula/metabolismo , MicroRNAs/genética , RNA Interferente Pequeno/genética , Xenopus/embriologia , Xenopus/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , MicroRNAs/metabolismo , Oócitos/metabolismo , RNA Interferente Pequeno/metabolismo , Retroelementos/genética , Xenopus/metabolismo
15.
Genesis ; 50(7): 572-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566284

RESUMO

Here, we report and characterize deep sequencing data and bioinformatics analysis of small RNAs from X. tropicalis gastrula. A total of 17,553,124 reads with perfect match to the genome derived from 2,616,053 unique sequences were identified. Seventy-seven percent of theses sequences were not found in previous reports from X. tropicalis oocytes and somatic tissues. Bioinformatics analyses indicate that a large fraction of the small RNAs are PIWI-interacting RNAs. Up to 23.9% of small RNAs mapped to transposable elements and 27% to genic regions. Most of the abundant transposon-derived small RNAs are found in oocyte and gastrula libraries, suggesting that transposons also need to be silenced during early embryonic development. Importantly, novel clusters of piRNAs whose expression is activated after zygotic transcription begins were identified in the genome of X. tropicalis. Additionally, miRNAs were also identified and many of them are not present in oocytes, suggesting that miRNA expression is stage-specific. To the best of our knowledge, this is the first high throughput data release and bioinformatics characterization of small RNAs during Xenopus early embryonic development.


Assuntos
Gástrula/metabolismo , Gastrulação/genética , Pequeno RNA não Traduzido/genética , Xenopus/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional , Elementos de DNA Transponíveis , Embrião não Mamífero , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Oócitos/fisiologia , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/isolamento & purificação , Análise de Sequência de DNA
16.
Development ; 136(17): 2987-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19666825

RESUMO

Tail regeneration in Xenopus tadpoles is a favorable model system to understand the molecular and cellular basis of tissue regeneration. Although turnover of the extracellular matrix (ECM) is a key event during tissue injury and repair, no functional studies to evaluate its role in appendage regeneration have been performed. Studying the role of Hyaluronan (HA), an ECM component, is particularly attractive because it can activate intracellular signaling cascades after tissue injury. Here we studied the function of HA and components of the HA pathway in Xenopus tadpole tail regeneration. We found that transcripts for components of this pathway, including Hyaluronan synthase2 (HAS2), Hyaluronidase2 and its receptors CD44 and RHAMM, were transiently upregulated in the regenerative bud after tail amputation. Concomitantly, an increase in HA levels was observed. Functional experiments using 4-methylumbelliferone, a specific HAS inhibitor that blocked the increase in HA levels after tail amputation, and transgenesis demonstrated that the HA pathway is required during the early phases of tail regeneration. Proper levels of HA are required to sustain proliferation of mesenchymal cells in the regenerative bud. Pharmacological and genetic inhibition of GSK3beta was sufficient to rescue proliferation and tail regeneration when HA synthesis was blocked, suggesting that GSK3beta is downstream of the HA pathway. We have demonstrated that HA is an early component of the regenerative pathway and is required for cell proliferation during the early phases of Xenopus tail regeneration. In addition, a crosstalk between HA and GSK3beta signaling during tail regeneration was demonstrated.


Assuntos
Ácido Hialurônico/metabolismo , Larva , Regeneração/fisiologia , Cauda/fisiologia , Xenopus laevis , Animais , Animais Geneticamente Modificados , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Ácido Hialurônico/genética , Himecromona/análogos & derivados , Himecromona/metabolismo , Larva/anatomia & histologia , Larva/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais/fisiologia , Cauda/anatomia & histologia , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia
17.
Gene Expr Patterns ; 43: 119234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151892

RESUMO

BACKGROUND: In a high-throughput RNA sequencing analysis, comparing the transcriptional response between Xenopus laevis regenerative and non-regenerative stages to spinal cord injury, cornifelin was found among the most highly differentially expressed genes. Cornifelin is mainly expressed in stratified squamous epithelia, but its expression in the spinal cord and other central nervous structures has only been described during early development. RESULTS: Here, we report cornifelin expression in the spinal cord, retina, and cornea throughout metamorphosis and in the spinal cord after injury. Cornifelin was detected in the grey matter and meninges of the spinal cord from NF-50 to NF-66, with decreased expression in the grey matter during metamorphosis. In the retina, cornifelin was expressed in the ganglion cell layer, the inner and outer nuclear layer, and the outer segment from NF-50 to NF-66. After spinal cord injury, we only observed cornifelin upregulation in NF-66 but no significant changes in NF-50. However, we found cornifelin positive cells in NF-50 meninges closing the spinal cord stumps 1 day after injury and delineating the borders of the spinal cord following the continuity of tissue regeneration in the following days after injury. Instead, in NF-66, cornifelin positive cells were distributed to the ventral side of the spinal cord at 6 days after injury, and at the injury gap at 10 days after injury. CONCLUSIONS: Cornifelin is expressed in the Xenopus laevis spinal cord and eye during metamorphosis and plays a role in the meningeal response to spinal cord injury.


Assuntos
Traumatismos da Medula Espinal , Animais , Metamorfose Biológica/genética , Medula Espinal , Traumatismos da Medula Espinal/genética , Xenopus laevis/genética
18.
Front Cell Dev Biol ; 10: 833175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568977

RESUMO

Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.

19.
J Biol Chem ; 285(38): 29546-55, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20639201

RESUMO

Dynamic regulation of cell adhesion receptors is required for proper cell migration in embryogenesis, tissue repair, and cancer. Integrins and Syndecan4 (SDC4) are the main cell adhesion receptors involved in focal adhesion formation and are required for cell migration. SDC4 interacts biochemically and functionally with components of the Wnt pathway such as Frizzled7 and Dishevelled. Non-canonical Wnt signaling, particularly components of the planar cell polarity branch, controls cell adhesion and migration in embryogenesis and metastatic events. Here, we evaluate the effect of this pathway on SDC4. We have found that Wnt5a reduces cell surface levels and promotes ubiquitination and degradation of SDC4 in cell lines and dorsal mesodermal cells from Xenopus gastrulae. Gain- and loss-of-function experiments demonstrate that Dsh plays a key role in regulating SDC4 steady-state levels. Moreover, a SDC4 deletion construct that interacts inefficiently with Dsh is resistant to Wnt5a-induced degradation. Non-canonical Wnt signaling promotes monoubiquitination of the variable region of SDC4 cytoplasmic domain. Mutation of these specific residues abrogates ubiquitination and results in increased SDC4 steady-state levels. This is the first example of a cell surface protein ubiquitinated and degraded in a Wnt/Dsh-dependent manner.


Assuntos
Sindecana-4/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Proteínas Desgrenhadas , Eletroforese em Gel de Poliacrilamida , Gástrula/metabolismo , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sindecana-4/genética , Ubiquitinação , Proteínas Wnt/genética , Proteína Wnt-5a , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
20.
Biol Res ; 44(1): 63-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720682

RESUMO

Proliferation and cell fate determination in the developing embryo are extrinsically regulated by multiple interactions among diverse secreted factors, such as Sonic Hedgehog (SHh), which act in a concentration-dependent manner. The fact that SHh is secreted as a lipid-modified protein suggests the existence of a mechanism to regulate its movement across embryonic fields. We have previously shown that heparan sulfate proteoglycans (HSPGs) are required for SHh binding and signalling. However, it was not determined which specific HSPG was responsible for these functions. Here we evaluated the contribution of perlecan on SHh localization and activity. To understand the mechanism of action of perlecan at the cellular level, we studied the role of perlecan-SHh interaction in SHh activity using both cell culture and biochemical assays. Our findings show that perlecan is a crucial anchor and modulator of SHh activity acting as an extracellular positive regulator of SHh.


Assuntos
Encéfalo/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Cromatografia em Gel , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteoglicanas de Heparan Sulfato/isolamento & purificação , Proteoglicanas de Heparan Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato/fisiologia , Humanos , Imuno-Histoquímica , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa