Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884572

RESUMO

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis (fALS) and fronto-temporal dementia (FTD), based on identification of likely pathogenic variants in patients from distinct ALS and FTD cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in-silico tools. In addition, gene burden analyses in the 100,000 genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls (OR: 57.0847 [10.2- 576.7]; p = 4.02 x10-07). Altogether, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harboring a predicted pathogenic TUBA4A missense mutation, including 5 confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from 3 patients harboring distinct TUBA4A missense showed significant alterations in microtubule organisation and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.

2.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34161705

RESUMO

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Assuntos
Anormalidades Múltiplas/genética , Ataxia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/fisiologia , Células Cultivadas , Cerebelo/anormalidades , Simulação por Computador , Face/anormalidades , Feminino , Fibroblastos , Genes Recessivos , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Malformações do Sistema Nervoso/genética , Linhagem , Fenótipo
3.
Brain ; 145(11): 3770-3775, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883251

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Proteína de Replicação C , Humanos , Vestibulopatia Bilateral/complicações , Ataxia Cerebelar/genética , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/genética , Reflexo Anormal , RNA Mensageiro/genética , Síndrome , Proteína de Replicação C/genética
4.
Genet Med ; 23(11): 2160-2170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34234304

RESUMO

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Assuntos
Ataxia Cerebelar , Genômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Humanos , Peroxinas , Receptores Citoplasmáticos e Nucleares , Estados Unidos , Sequenciamento do Exoma
5.
Hum Mutat ; 37(12): 1340-1353, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528516

RESUMO

Next-generation sequencing (NGS) has an established diagnostic value for inherited ataxia. However, the need of a rigorous process of analysis and validation remains challenging. Moreover, copy number variations (CNV) or dynamic expansions of repeated sequence are classically considered not adequately detected by exome sequencing technique. We applied a strategy of mini-exome coupled to read-depth based CNV analysis to a series of 33 patients with probable inherited ataxia and onset <50 years. The mini-exome consisted of the capture of 4,813 genes having associated clinical phenotypes. Pathogenic variants were found in 42% and variants of uncertain significance in 24% of the patients. These results are comparable to those from whole exome sequencing and better than previous targeted NGS studies. CNV and dynamic expansions of repeated CAG sequence were identified in three patients. We identified both atypical presentation of known ataxia genes (ATM, NPC1) and mutations in genes very rarely associated with ataxia (ERCC4, HSD17B4). We show that mini-exome bioinformatics data analysis allows the identification of CNV and dynamic expansions of repeated sequence. Our study confirms the diagnostic value of the proposed genetic analysis strategy. We also provide an algorithm for the multidisciplinary process of analysis, interpretation, and validation of NGS data.


Assuntos
Ataxia Cerebelar/genética , Variações do Número de Cópias de DNA , Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idade de Início , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Transporte/genética , Ataxia Cerebelar/etiologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Proteína C1 de Niemann-Pick , Proteína Multifuncional do Peroxissomo-2/genética , Adulto Jovem
6.
Hum Mutat ; 35(10): 1179-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24944099

RESUMO

Alterations of USH2A, encoding usherin, are responsible for more than 70% of cases of Usher syndrome type II (USH2), a recessive disorder that combines moderate to severe hearing loss and retinal degeneration. The longest USH2A transcript encodes usherin isoform b, a 5,202-amino-acid transmembrane protein with an exceptionally large extracellular domain consisting notably of a Laminin N-terminal domain and numerous Laminin EGF-like (LE) and Fibronectin type III (FN3) repeats. Mutations of USH2A are scattered throughout the gene and mostly private. Annotating these variants is therefore of major importance to correctly assign pathogenicity. We have extensively genotyped a novel cohort of 152 Usher patients and identified 158 different mutations, of which 93 are newly described. Pooling this new data with the existing pathogenic variants already incorporated in USHbases reveals several previously unappreciated features of the mutational spectrum. We show that parts of the protein are more likely to tolerate single amino acid variations, whereas others constitute pathogenic missense hotspots. We have found, in repeated LE and FN3 domains, a nonequal distribution of the missense mutations that highlights some crucial positions in usherin with possible consequences for the assessment of the pathogenicity of the numerous missense variants identified in USH2A.


Assuntos
Proteínas da Matriz Extracelular/genética , Mutação , Síndromes de Usher/genética , Adulto , Análise Mutacional de DNA , Técnicas de Genotipagem , Humanos , Síndromes de Usher/metabolismo
7.
Mol Vis ; 20: 1398-410, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352746

RESUMO

PURPOSE: The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. METHODS: The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. RESULTS: We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. CONCLUSIONS: Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.


Assuntos
Sequência de Bases , Proteínas da Matriz Extracelular/genética , Retinose Pigmentar/genética , Deleção de Sequência , Síndromes de Usher/genética , Adulto , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Éxons , Feminino , Heterozigoto , Homozigoto , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Retinose Pigmentar/patologia , Síndromes de Usher/patologia
8.
Hum Mutat ; 33(1): 104-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22009552

RESUMO

USH2A sequencing in three affected members of a large family, referred for the recessive USH2 syndrome, identified a single pathogenic alteration in one of them and a different mutation in the two affected nieces. As the patients carried a common USH2A haplotype, they likely shared a mutation not found by standard sequencing techniques. Analysis of RNA from nasal cells in one affected individual identified an additional pseudoexon (PE) resulting from a deep intronic mutation. This was confirmed by minigene assay. This is the first example in Usher syndrome (USH) with a mutation causing activation of a PE. The finding of this alteration in eight other individuals of mixed European origin emphasizes the importance of including RNA analysis in a comprehensive diagnostic service. Finally, this mutation, which would not have been found by whole-exome sequencing, could offer, for the first time in USH, the possibility of therapeutic correction by antisense oligonucleotides (AONs).


Assuntos
Éxons/genética , Proteínas da Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Retinose Pigmentar/genética , Análise de Sequência de RNA , Síndromes de Usher/genética , Sequência de Bases , Estudos de Casos e Controles , Análise Mutacional de DNA , Europa (Continente) , Exoma , Feminino , Genes Recessivos , Genótipo , Haplótipos , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/tratamento farmacológico , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/uso terapêutico , Linhagem , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/tratamento farmacológico , Índice de Gravidade de Doença , Síndromes de Usher/diagnóstico , Síndromes de Usher/tratamento farmacológico
9.
Hum Mutat ; 33(3): 504-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22147658

RESUMO

We have systematically analyzed the two known minor genes involved in Usher syndrome type 2, DFNB31 and GPR98, for mutations in a cohort of 31 patients not linked to USH2A. PDZD7, an Usher syndrome type 2 (USH2) related gene, was analyzed when indicated. We found that mutations in GPR98 contribute significantly to USH2. We report 17 mutations in 10 individuals, doubling the number of GPR98 mutations reported to date. In contrast to mutations in usherin, the mutational spectrum of GPR98 predominantly results in a truncated protein product. This is true even when the mutation affects splicing, and we have incorporated a splicing reporter minigene assay to show this, where appropriate. Only two mutations were found which we believe to be genuine missense changes. Discrepancy in the mutational spectrum between GPR98 and USH2A is discussed. Only two patients were found with mutations in DFNB31, showing that mutations of this gene contribute to only a very small extent to USH2. Close examination of the clinical details, where available, for patients in whom no mutation was found in USH2A, GPR98, or DFNB31, showed that most of them had atypical features. In effect, these three genes account for the vast majority of USH2 patients and their analysis provide a robust pathway for routine molecular diagnosis.


Assuntos
Proteínas da Matriz Extracelular/genética , Síndromes de Usher/genética , Haplótipos , Humanos , Proteínas de Membrana/genética , Mutação , Reação em Cadeia da Polimerase , Receptores Acoplados a Proteínas G/genética
10.
J Neurol ; 268(9): 3337-3343, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33666721

RESUMO

OBJECTIVE: Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited multisystem ataxia compromising cerebellar, vestibular, and sensory nerves, which has been associated to a pathogenic AAGGG(n) biallelic expansion repeat in the RFC1 gene. Our objective was to assess its prevalence in a French cohort of patients with idiopathic sporadic late-onset ataxia (ILOA), idiopathic early-onset ataxia (IEOA), or Multiple System Atrophy of Cerebellar type (MSA-C). METHODS: 163 patients were recruited in 3 French tertiary centers: 100 ILOA, 21 IEOA, and 42 patients with possible or probable MSA-C. RESULTS: A pathogenic biallelic RFC1 AAGGG(n) repeat expansion was found in 15 patients: 15/100 in the ILOA group, but none in the IEOA and MSA-C subgroups. 14/15 patients had a CANVAS phenotype. Only 1/15 had isolated cerebellar ataxia, but also shorter biallelic expansions. Two RFC1 AAGGG(n) alleles were found in 78% of patients with a CANVAS phenotype. In one post-mortem case, the pathophysiological involvement of cerebellum and medullar posterior columns was found. CONCLUSION: Our study confirms the genetic heterogeneity of the CANVAS and that RFC1 repeat expansions should be searched for preferentially in case of unexplained ILOA associated with a sensory neuronopathy, but not particularly in patients classified as MSA-C.


Assuntos
Ataxia Cerebelar , Proteína de Replicação C/genética , Degenerações Espinocerebelares , Ataxia , Ataxia Cerebelar/genética , Estudos de Coortes , Humanos , Degenerações Espinocerebelares/genética
11.
J Neurol ; 268(5): 1927-1937, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417001

RESUMO

BACKGROUND: STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia. OBJECTIVE: We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48. METHODS: Retrospective collection of patients with SCAR16 or SCA48 diagnosed in three French genetic centers (Montpellier, Strasbourg and Nancy). RESULTS: Here, we report four SCAR16 and nine SCA48 patients from two SCAR16 and five SCA48 unrelated French families. All presented with slowly progressive cerebellar ataxia. Additional findings included cognitive decline, dystonia, parkinsonism and swallowing difficulties. The age at onset was highly variable, ranging from 14 to 76 years. Brain MRI showed marked cerebellar atrophy in all patients. Phenotypic findings associated with STUB1 pathogenic variations cover a broad spectrum, ranging from isolated slowly progressive ataxia to severe encephalopathy, and include extrapyramidal features. We described five new pathogenic variations, two previously reported pathogenic variations, and two rare variants of unknown significance in association with STUB1-related disorders. We also report the first pathogenic variation associated with both dominant and recessive forms of inheritance (SCAR16 and SCA48). CONCLUSION: Even though differences are observed between the recessive and dominant forms, it appears that a continuum exists between these two entities. While adding new symptoms associated with STUB1 pathogenic variations, we insist on the difficulty of genetic counselling in STUB1-related pathologies. Finally, we underscore the usefulness of DAT-scan as an additional clue for diagnosis.


Assuntos
Ataxia Cerebelar , Ataxia , Proteínas de Choque Térmico , Humanos , Mutação/genética , Estudos Retrospectivos , Ubiquitina-Proteína Ligases/genética
12.
Hum Mutat ; 31(6): 734-41, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20513143

RESUMO

We have shown that nasal ciliated epithelium, which can be easily biopsied under local anesthetic, provides a good source of RNA transcripts from eight of the nine known genes that cause Usher syndrome, namely, MYO7A, USH1C, CDH23, PCDH15, USH1G for Usher type 1, and USH2A, GPR98, WHRN for Usher type 2. Furthermore, the known or predicted effect on mRNA splicing of eight variants was faithfully reproduced in the biopsied sample as measured by nested RT-PCR. These included changes at the canonical acceptor site, changes within the noncanonical acceptor site and both synonymous and nonsynonymous amino acid changes. This shows that mRNA analysis by this method will help in assessing the pathogenic effect of variants, which is a major problem in the molecular diagnosis of Usher syndrome.


Assuntos
Células Epiteliais/metabolismo , Predisposição Genética para Doença/genética , Mutação , Sítios de Splice de RNA/genética , Síndromes de Usher/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Células Epiteliais/patologia , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Técnicas de Diagnóstico Molecular/métodos , Miosina VIIa , Miosinas/genética , Cavidade Nasal/patologia , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Síndromes de Usher/diagnóstico
13.
Hum Mutat ; 31(3): 347-55, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20052763

RESUMO

Molecular diagnosis in Usher syndrome type 1 and 2 patients led to the identification of 21 sequence variations located in noncanonical positions of splice sites in MYO7A, CDH23, USH1C, and USH2A genes. To establish experimentally the splicing pattern of these substitutions, whose impact on splicing is not always predictable by available softwares, ex vivo splicing assays were performed. The branch-point mapping strategy was also used to investigate further a putative branch-point mutation in USH2A intron 43. Aberrant splicing was demonstrated for 16 of the 21 (76.2%) tested sequence variations. The mutations resulted more frequently in activation of a nearby cryptic splice site or use of a de novo splice site than exon skipping (37.5%). This study allowed the reclassification as splicing mutations of one silent (c.7872G>A (p.Glu2624Glu) in CDH23) and four missense mutations (c.2993G>A (p.Arg998Lys) in USH2A, c.592G>A (p.Ala198Thr), c.3503G>C [p.Arg1168Pro], c.5944G>A (p.Gly1982Arg) in MYO7A), whereas it provided clues about a role in structure/function in four other cases: c.802G>A (p.Gly268Arg), c.653T>A (p.Val218Glu) (USH2A), and c.397C>T (p.His133Tyr), c.3502C>T (p.Arg1168Trp) (MYO7A). Our data provide insights into the contribution of splicing mutations in Usher genes and illustrate the need to define accurately their splicing outcome for diagnostic purposes.


Assuntos
Regulação da Expressão Gênica , Mutação , Síndromes de Usher/genética , Algoritmos , Processamento Alternativo , Sequência de Bases , Análise Mutacional de DNA , Éxons , Perfilação da Expressão Gênica , Células HeLa , Humanos , Íntrons , Modelos Genéticos , Dados de Sequência Molecular , Relação Estrutura-Atividade
14.
J Neurol ; 267(1): 203-213, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612321

RESUMO

ATP8A2-related disorders are autosomal recessive conditions that associate encephalopathy with or without hypotonia, psychomotor delay, abnormal movements, chorea, tremor, optic atrophy and cerebellar atrophy (CARMQ4). Through a multi-centric collaboration, we identified six point mutations (one splice site and five missense mutations) involving ATP8A2 in six individuals from five families. Two patients from one family with the homozygous p.Gly585Val mutation had a milder presentation without encephalopathy. Expression and functional studies of the missense mutations demonstrated that protein levels of four of the five missense variants were very low and lacked phosphatidylserine-activated ATPase activity. One variant p.Ile215Leu, however, expressed at normal levels and displayed phospholipid-activated ATPase activity similar to the non-mutated protein. We therefore expand for the first time the phenotype related to ATP8A2 mutations to less severe forms characterized by cerebellar ataxia without encephalopathy and suggest that ATP8A2 should be analyzed for all cases of syndromic or non-syndromic recessive or sporadic ataxia.


Assuntos
Adenosina Trifosfatases/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia Cerebelar/fisiopatologia , Proteínas de Transferência de Fosfolipídeos/genética , Adulto , Criança , Pré-Escolar , Consanguinidade , Feminino , Genes Recessivos , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Mutação Puntual
15.
Hum Mutat ; 29(8): E76-87, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18484607

RESUMO

Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Mutação , Síndromes de Usher/genética , Éxons , Proteínas da Matriz Extracelular/genética , Variação Genética , Genótipo , Humanos , Íntrons , Modelos Genéticos , Fenótipo , Polimorfismo Genético , Software , Interface Usuário-Computador
16.
Hum Mutat ; 28(8): 781-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17405132

RESUMO

The usherin gene (USH2A) has been screened for mutations causing Usher syndrome type II (USH2). Two protein isoforms have been identified: a short isoform of 1,546 amino acids and a more recently recognized isoform extending to 5,202 amino acids. We have screened the full length by genomic sequencing. We confirm that many mutations occur in the exons contributing solely to the longer form. USH2 is an autosomal recessive disorder and, in contrast to previous studies, both mutations were identified in 23 patients and a single mutation in 2 out of 33 patients. A total of 34 distinct mutated alleles were identified, including one complex allele with three variants and another with two. A total of 27 of these are novel, confirming that most mutations in usherin are private. Many of the mutations will lead to prematurely truncated protein but as there are a substantial number of missense variants, we have used in silico analysis to assess their pathogenicity. Evidence that they are disease-causing has been produced by protein alignments and three-dimensional (3D) structural predictions when possible. We have identified a previously unrecognized cysteine rich structural domain, containing 12 dicysteine repeats, and show that three missense mutations result in the loss of one of a pair of the defining cysteine-cysteine pairs.


Assuntos
Alelos , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/genética , Síndromes de Usher/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Criança , Cisteína , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/química , Genótipo , Humanos , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
17.
J Cyst Fibros ; 15(3): 309-12, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27117206

RESUMO

The detection of two frequent CFTR disease-causing variations in the context of a newborn screening program (NBS) usually leads to the diagnosis of cystic fibrosis (CF) and a relevant genetic counseling in the family. In the present study, CF-causing variants p.Phe508del (F508del) and c.3140-26A>G (3272-26A>G) were identified on a neonate with positive ImmunoReactive Trypsinogen test by the Elucigene™ CF30 kit. The CF diagnosis initially suggested, despite three inconclusive Sweat Chloride Tests (SCT), was finally ruled out after the familial segregation study combined with a negative SCT. Haplotype studies, based on the comparison of 80 p.Phe508del haplotypes, suggested a probable de novo occurrence of c.3140-26A>G on the p.Phe508del ancestral allele in this family. This false positive case emphasizes the importance of SCT in the NBS strategy. Moreover, it raises the need for familial segregation studies in CF and in overall molecular diagnosis strategy of autosomal recessive diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Testes Genéticos/métodos , Triagem Neonatal/métodos , Suor/metabolismo , Tripsinogênio/análise , Alelos , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Diagnóstico Diferencial , Reações Falso-Positivas , Família , Feminino , Variação Genética , Humanos , Testes Imunológicos/métodos , Recém-Nascido , Anamnese/métodos
18.
Eur J Hum Genet ; 24(8): 1154-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26669662

RESUMO

Ataxia is a symptom that is often associated with syndromic inherited diseases. We previously reported the linkage of a novel syndrome, ataxia with blindness and deafness (SCAR3/SCABD, OMIM# 271250), to chromosome 6p21-p23 by linkage mapping of an Arab Israeli consanguineous family. We have now identified by whole-exome sequencing a homozygous missense mutation in the Arab Israeli family in the SLC52A2 gene located in 8qter, therefore excluding linkage of this family to 6p. We confirmed the involvement of SLC52A2 by the identification of a second mutation in an independent family with an identical syndromic presentation, which we suggest to name SCABD2. SCABD2 is therefore allelic to Brown-Vialleto-Van Laere syndrome type 2 defined by prominent motoneuronopathy and deafness, and also caused by SLC52A2 mutations. In the course of this project, we identified a clinically similar family with a homozygous missense mutation in PEX6, which is located in 6p21. Therefore, despite false linkage in the initial family, SCABD1/SCAR3 is located in 6p21 and is caused by PEX6 mutations. Both SLC52A2 and PEX6 should be included in screening panels for the diagnosis of syndromic inherited ataxias, particularly as patients with mutations in SLC52A2 can be ameliorated by riboflavin supplementation.


Assuntos
Adenosina Trifosfatases/genética , Cegueira/genética , Surdez/genética , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/genética , Ataxias Espinocerebelares/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Cegueira/diagnóstico , Células Cultivadas , Criança , Surdez/diagnóstico , Exoma , Feminino , Humanos , Masculino , Linhagem , Ataxias Espinocerebelares/diagnóstico , Síndrome
19.
Mol Genet Genomic Med ; 2(1): 30-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24498627

RESUMO

We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa