Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 33(4): e17251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112228

RESUMO

Populations of many bumblebee species are declining, with distributions shifting northwards to track suitable climates. Climate change is considered a major contributing factor. Arctic species are particularly vulnerable as they cannot shift further north, making assessment of their population viability important. Analysis of levels of whole-genome variation is a powerful way to analyse population declines and fragmentation. Here, we use genome sequencing to analyse genetic variation in seven species of bumblebee from the Scandinavian mountains, including two classified as vulnerable. We sequenced 333 samples from across the ranges of these species in Sweden. Estimates of effective population size (NE ) vary from ~55,000 for species with restricted high alpine distributions to 220,000 for more widespread species. Population fragmentation is generally very low or undetectable over large distances in the mountains, suggesting an absence of barriers to gene flow. The relatively high NE and low population structure indicate that none of the species are at immediate risk of negative genetic effects caused by high levels of genetic drift. However, reconstruction of historical fluctuations in NE indicates that the arctic specialist species Bombus hyperboreus has experienced population declines since the last ice age and we detected one highly inbred diploid male of this species close to the southern limit of its range, potentially indicating elevated genetic load. Although the levels of genetic variation in montane bumblebee populations are currently relatively high, their ranges are predicted to shrink drastically due to the effects of climate change and monitoring is essential to detect future population declines.


Assuntos
Mudança Climática , Variação Genética , Abelhas/genética , Masculino , Animais , Variação Genética/genética , Densidade Demográfica , Países Escandinavos e Nórdicos , Genômica
2.
Mol Biol Evol ; 38(8): 3126-3143, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33823537

RESUMO

Evidence is accumulating that gene flow commonly occurs between recently diverged species, despite the existence of barriers to gene flow in their genomes. However, we still know little about what regions of the genome become barriers to gene flow and how such barriers form. Here, we compare genetic differentiation across the genomes of bumblebee species living in sympatry and allopatry to reveal the potential impact of gene flow during species divergence and uncover genetic barrier loci. We first compared the genomes of the alpine bumblebee Bombus sylvicola and a previously unidentified sister species living in sympatry in the Rocky Mountains, revealing prominent islands of elevated genetic divergence in the genome that colocalize with centromeres and regions of low recombination. This same pattern is observed between the genomes of another pair of closely related species living in allopatry (B. bifarius and B. vancouverensis). Strikingly however, the genomic islands exhibit significantly elevated absolute divergence (dXY) in the sympatric, but not the allopatric, comparison indicating that they contain loci that have acted as barriers to historical gene flow in sympatry. Our results suggest that intrinsic barriers to gene flow between species may often accumulate in regions of low recombination and near centromeres through processes such as genetic hitchhiking, and that divergence in these regions is accentuated in the presence of gene flow.


Assuntos
Abelhas/genética , Fluxo Gênico , Genoma de Inseto , Isolamento Reprodutivo , Simpatria , Animais , Evolução Molecular , Recombinação Genética
3.
J Evol Biol ; 33(5): 576-583, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31961980

RESUMO

Post-meiotic sperm ageing, both before ejaculation and after ejaculation, has been shown to negatively affect offspring fitness by lowering the rate of embryonic development, reducing embryonic viability and decreasing offspring condition. These negative effects are thought to be caused by intrinsic factors such as oxidative stress and ATP depletion or extrinsic factors such as temperature and osmosis. Effects of post-ejaculation sperm ageing on offspring fitness have so far almost exclusively been tested in internal fertilizers. Here, we tested whether intrinsic post-ejaculation sperm ageing affects offspring performance in an external fertilizer, the Atlantic salmon Salmo salar. We performed in vitro fertilizations with a split-clutch design where sperm were subjected to four post-ejaculation ageing treatments. We varied the duration between sperm activation and fertilization while minimizing extrinsic stress factors and tested how this affected offspring fitness. We found no evidence for an effect of our treatments on embryo survival, hatching time, larval standard length, early larval survival or larval growth rate, indicating that intrinsic post-ejaculation sperm ageing may not occur in Atlantic salmon. One reason may be the short life span of salmon sperm after ejaculation. Whether our findings are true in other external fertilizers with extended sperm activity remains to be tested.


Assuntos
Senescência Celular , Aptidão Genética , Salmo salar/fisiologia , Espermatozoides/fisiologia , Animais , Feminino , Fertilização in vitro , Masculino
4.
J Evol Biol ; 33(2): 217-224, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677316

RESUMO

Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.


Assuntos
Caenorhabditis/fisiologia , Modelos Biológicos , Distribuição Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis/classificação , Feminino
5.
Evol Lett ; 4(4): 371-381, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32774885

RESUMO

Theory maintains that when future environment is predictable, parents should adjust the phenotype of their offspring to match the anticipated environment. The plausibility of positive anticipatory parental effects is hotly debated and the experimental evidence for the evolution of such effects is currently lacking. We experimentally investigated the evolution of anticipatory maternal effects in a range of environments that differ drastically in how predictable they are. Populations of the nematode Caenorhabditis remanei, adapted to 20°C, were exposed to a novel temperature (25°C) for 30 generations with either positive or zero correlation between parent and offspring environment. We found that populations evolving in novel environments that were predictable across generations evolved a positive anticipatory maternal effect, because they required maternal exposure to 25°C to achieve maximum reproduction in that temperature. In contrast, populations evolving under zero environmental correlation had lost this anticipatory maternal effect. Similar but weaker patterns were found if instead rate-sensitive population growth was used as a fitness measure. These findings demonstrate that anticipatory parental effects evolve in response to environmental change so that ill-fitting parental effects can be rapidly lost. Evolution of positive anticipatory parental effects can aid population viability in rapidly changing but predictable environments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa