Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(6): 1526-1541.e16, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474372

RESUMO

While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.


Assuntos
Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Proteínas Virais/metabolismo , Zika virus/fisiologia , Animais , Atlas como Assunto , Chlorocebus aethiops , Simulação por Computador , Conjuntos de Dados como Assunto , Células HEK293 , Humanos , Células MCF-7 , Proteoma/química , Células Vero , Proteínas Virais/química
2.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33147627

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional , SARS-CoV-2/isolamento & purificação , Pesquisa Biomédica , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
3.
PLoS Comput Biol ; 18(1): e1009778, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041647

RESUMO

The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine learning models can support decision making in healthcare by assessing fatality risk in patients that do not yet show severe signs of COVID-19. Most predictive models rely on static demographic features and clinical values obtained upon hospitalization. However, time-dependent biomarkers associated with COVID-19 severity, such as antibody titers, can substantially contribute to the development of more accurate outcome models. Here we show that models trained on immune biomarkers, longitudinally monitored throughout hospitalization, predicted mortality and were more accurate than models based on demographic and clinical data upon hospital admission. Our best-performing predictive models were based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell (WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive protein and blood urea nitrogen levels, were found to correlate with severity of disease and mortality in a time-dependent manner. Shapley additive explanations of our model revealed the higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate that the kinetics of immune biomarkers can inform clinical models to serve as a powerful monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring the importance of contextualizing clinical parameters according to their time post-symptom onset.


Assuntos
Anticorpos Antivirais/sangue , COVID-19 , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/terapia , Biologia Computacional , Diagnóstico por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
4.
Nature ; 538(7623): 118-122, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27626385

RESUMO

Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins, the mechanisms of acetylation-mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 (also known as TP53) was an early example of non-histone protein acetylation and its precise role remains unclear. Lysine acetylation often creates binding sites for bromodomain-containing 'reader' proteins. Here we use a proteomic screen to identify the oncoprotein SET as a major cellular factor whose binding with p53 is dependent on CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells, but SET-mediated repression is abolished by stress-induced acetylation of p53 CTD. Moreover, loss of the interaction with SET activates p53, resulting in tumour regression in mouse xenograft models. Notably, the acidic domain of SET acts as a 'reader' for the unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, acetylation of p53 also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP (also known as DCAF1), DAXX and PELP1 (refs. 7, 8, 9), and computational analysis of the proteome has identified numerous proteins with the potential to serve as acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knock-in mouse model expressing an acetylation-mimicking form of p53. These results reveal that acidic-domain-containing factors act as a class of acetylation-dependent regulators by targeting p53 and, potentially, other proteins.


Assuntos
Acetilação , Chaperonas de Histonas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Chaperonas de Histonas/química , Histonas/química , Histonas/metabolismo , Humanos , Ligantes , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
5.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32611759

RESUMO

Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.


Assuntos
Ebolavirus/efeitos dos fármacos , Proteína C1 de Niemann-Pick/antagonistas & inibidores , Receptores Virais/antagonistas & inibidores , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas Virais de Fusão/antagonistas & inibidores , Vírion/efeitos dos fármacos , Animais , Sítios de Ligação , Bioensaio , Chlorocebus aethiops , Clomifeno/química , Clomifeno/farmacologia , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/metabolismo , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Proteína C1 de Niemann-Pick/química , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/farmacologia , Toremifeno/química , Toremifeno/farmacologia , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Vírion/química , Vírion/genética , Vírion/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(26): 7160-5, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298358

RESUMO

Desmosomes are intercellular adhesive junctions that impart strength to vertebrate tissues. Their dense, ordered intercellular attachments are formed by desmogleins (Dsgs) and desmocollins (Dscs), but the nature of trans-cellular interactions between these specialized cadherins is unclear. Here, using solution biophysics and coated-bead aggregation experiments, we demonstrate family-wise heterophilic specificity: All Dsgs form adhesive dimers with all Dscs, with affinities characteristic of each Dsg:Dsc pair. Crystal structures of ectodomains from Dsg2 and Dsg3 and from Dsc1 and Dsc2 show binding through a strand-swap mechanism similar to that of homophilic classical cadherins. However, conserved charged amino acids inhibit Dsg:Dsg and Dsc:Dsc interactions by same-charge repulsion and promote heterophilic Dsg:Dsc interactions through opposite-charge attraction. These findings show that Dsg:Dsc heterodimers represent the fundamental adhesive unit of desmosomes and provide a structural framework for understanding desmosome assembly.


Assuntos
Adesivos/química , Desmocolinas/química , Desmogleínas/química , Adesivos/metabolismo , Desmocolinas/metabolismo , Desmogleínas/metabolismo , Dimerização , Humanos , Cinética , Conformação Proteica
7.
Mol Genet Genomics ; 292(5): 1037-1049, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28597316

RESUMO

Conjugative transfer of plasmid R388 requires the coupling protein TrwB for protein and DNA transport, but their molecular role in transport has not been deciphered. We investigated the role of residues protruding into the central channel of the TrwB hexamer by a mutational analysis. Mutations affecting lysine residues K275, K398, and K421, and residue S441, all facing the internal channel, affected transport of both DNA and the relaxase protein in vivo. The ATPase activity of the purified soluble variants was affected significantly in the presence of accessory protein TrwA or DNA, correlating with their behaviour in vivo. Alteration of residues located at the cytoplasmic or the inner membrane interface resulted in lower activity in vivo and in vitro, while variants affecting residues in the central region of the channel showed increased DNA and protein transfer efficiency and higher ATPase activity, especially in the absence of TrwA. In fact, these variants could catalyze DNA transfer in the absence of TrwA under conditions in which the wild-type system was transfer deficient. Our results suggest that protein and DNA molecules have the same molecular requirements for translocation by Type IV secretion systems, with residues at both ends of the TrwB channel controlling the opening-closing mechanism, while residues embedded in the channel would set the pace for substrate translocation (both protein and DNA) in concert with TrwA.


Assuntos
Conjugação Genética/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Proteínas Repressoras/genética , Sistemas de Secreção Tipo IV/genética , Adenosina Trifosfatases/metabolismo , DNA Bacteriano/genética , Lisina/genética , Translocação Genética/genética
8.
PLoS Biol ; 9(7): e1001095, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750663

RESUMO

Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNA(fMet) requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNA(fMet). Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNA(fMet), IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNA(fMet), which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNA(fMet) induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation.


Assuntos
Fatores de Iniciação de Peptídeos/química , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/genética , Modelos Moleculares , Conformação Molecular , Fatores de Iniciação de Peptídeos/ultraestrutura , RNA Mensageiro/metabolismo , RNA de Transferência de Metionina/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(2): 557-62, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21178074

RESUMO

The multidomain homotetrameric tumor suppressor p53 has two modes of binding dsDNA that are thought to be responsible for scanning and recognizing specific response elements (REs). The C termini bind nonspecifically to dsDNA. The four DNA-binding domains (DBDs) bind REs that have two symmetric 10 base-pair sequences. p53 bound to a 20-bp RE has the DBDs enveloping the DNA, which is in the center of the molecule surrounded by linker sequences to the tetramerization domain (Tet). We investigated by electron microscopy structures of p53 bound to DNA sequences consisting of a 20-bp RE with either 12 or 20 bp nonspecific extensions on either end. We found a variety of structures that give clues to recognition and scanning mechanisms. The 44- and 60-bp sequences gave rise to three and four classes of structures, respectively. One was similar to the known 20-bp structure, but the DBDs in the other classes were loosely arranged and incompatible with specific DNA recognition. Some of the complexes had density consistent with the C termini extending from Tet to the DNA, adjacent to the DBDs. Single-molecule fluorescence resonance energy transfer experiments detected the approach of the C termini towards the DBDs on addition of DNA. The structural data are consistent with p53 sliding along DNA via its C termini and the DNA-binding domains hopping on and off during searches for REs. The loose structures and posttranslational modifications account for the affinity of nonspecific DNA for p53 and point to a mechanism of enhancement of specificity by its binding to effector proteins.


Assuntos
DNA/química , Microscopia Eletrônica/métodos , Proteína Supressora de Tumor p53/química , Alanina/química , Cistina/química , Transferência Ressonante de Energia de Fluorescência , Genes p53 , Humanos , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
10.
Nat Commun ; 14(1): 4454, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488123

RESUMO

Andes virus (ANDV) and Sin Nombre virus (SNV) are the etiologic agents of severe hantavirus cardiopulmonary syndrome (HCPS) in the Americas for which no FDA-approved countermeasures are available. Protocadherin-1 (PCDH1), a cadherin-superfamily protein recently identified as a critical host factor for ANDV and SNV, represents a new antiviral target; however, its precise role remains to be elucidated. Here, we use computational and experimental approaches to delineate the binding surface of the hantavirus glycoprotein complex on PCDH1's first extracellular cadherin repeat domain. Strikingly, a single amino acid residue in this PCDH1 surface influences the host species-specificity of SNV glycoprotein-PCDH1 interaction and cell entry. Mutation of this and a neighboring residue substantially protects Syrian hamsters from pulmonary disease and death caused by ANDV. We conclude that PCDH1 is a bona fide entry receptor for ANDV and SNV whose direct interaction with hantavirus glycoproteins could be targeted to develop new interventions against HCPS.


Assuntos
Doenças Transmissíveis , Orthohantavírus , Vírus de RNA , Animais , Cricetinae , Mutação Puntual , Protocaderinas , Caderinas , Mesocricetus , Síndrome
11.
Cell Host Microbe ; 30(2): 248-259.e6, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34998466

RESUMO

The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Anticorpos Antivirais , Brasil , Genótipo , Humanos , Vacinas Atenuadas , Vírus da Febre Amarela/genética
12.
JAMA Intern Med ; 182(2): 115-126, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34901997

RESUMO

Importance: There is clinical equipoise for COVID-19 convalescent plasma (CCP) use in patients hospitalized with COVID-19. Objective: To determine the safety and efficacy of CCP compared with placebo in hospitalized patients with COVID-19 receiving noninvasive supplemental oxygen. Design, Setting, and Participants: CONTAIN COVID-19, a randomized, double-blind, placebo-controlled trial of CCP in hospitalized adults with COVID-19, was conducted at 21 US hospitals from April 17, 2020, to March 15, 2021. The trial enrolled 941 participants who were hospitalized for 3 or less days or presented 7 or less days after symptom onset and required noninvasive oxygen supplementation. Interventions: A unit of approximately 250 mL of CCP or equivalent volume of placebo (normal saline). Main Outcomes and Measures: The primary outcome was participant scores on the 11-point World Health Organization (WHO) Ordinal Scale for Clinical Improvement on day 14 after randomization; the secondary outcome was WHO scores determined on day 28. Subgroups were analyzed with respect to age, baseline WHO score, concomitant medications, symptom duration, CCP SARS-CoV-2 titer, baseline SARS-CoV-2 serostatus, and enrollment quarter. Outcomes were analyzed using a bayesian proportional cumulative odds model. Efficacy of CCP was defined as a cumulative adjusted odds ratio (cOR) less than 1 and a clinically meaningful effect as cOR less than 0.8. Results: Of 941 participants randomized (473 to placebo and 468 to CCP), 556 were men (59.1%); median age was 63 years (IQR, 52-73); 373 (39.6%) were Hispanic and 132 (14.0%) were non-Hispanic Black. The cOR for the primary outcome adjusted for site, baseline risk, WHO score, age, sex, and symptom duration was 0.94 (95% credible interval [CrI], 0.75-1.18) with posterior probability (P[cOR<1] = 72%); the cOR for the secondary adjusted outcome was 0.92 (95% CrI, 0.74-1.16; P[cOR<1] = 76%). Exploratory subgroup analyses suggested heterogeneity of treatment effect: at day 28, cORs were 0.72 (95% CrI, 0.46-1.13; P[cOR<1] = 93%) for participants enrolled in April-June 2020 and 0.65 (95% CrI, 0.41 to 1.02; P[cOR<1] = 97%) for those not receiving remdesivir and not receiving corticosteroids at randomization. Median CCP SARS-CoV-2 neutralizing titer used in April to June 2020 was 1:175 (IQR, 76-379). Any adverse events (excluding transfusion reactions) were reported for 39 (8.2%) placebo recipients and 44 (9.4%) CCP recipients (P = .57). Transfusion reactions occurred in 2 (0.4) placebo recipients and 8 (1.7) CCP recipients (P = .06). Conclusions and Relevance: In this trial, CCP did not meet the prespecified primary and secondary outcomes for CCP efficacy. However, high-titer CCP may have benefited participants early in the pandemic when remdesivir and corticosteroids were not in use. Trial Registration: ClinicalTrials.gov Identifier: NCT04364737.


Assuntos
Transfusão de Componentes Sanguíneos , COVID-19/terapia , Estado Terminal/terapia , Adulto , Idoso , Método Duplo-Cego , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Imunização Passiva , Masculino , Pessoa de Meia-Idade , Respiração Artificial/estatística & dados numéricos , Resultado do Tratamento , Estados Unidos , Soroterapia para COVID-19
13.
Cell Syst ; 12(1): 82-91.e3, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33053371

RESUMO

Viruses deploy genetically encoded strategies to coopt host machinery and support viral replicative cycles. Here, we use protein structure similarity to scan for molecular mimicry, manifested by structural similarity between viral and endogenous host proteins, across thousands of cataloged viruses and hosts spanning broad ecological niches and taxonomic range, including bacteria, plants and fungi, invertebrates, and vertebrates. This survey identified over 6,000,000 instances of structural mimicry; more than 70% of viral mimics cannot be discerned through protein sequence alone. We demonstrate that the manner and degree to which viruses exploit molecular mimicry varies by genome size and nucleic acid type and identify 158 human proteins that are mimicked by coronaviruses, providing clues about cellular processes driving pathogenesis. Our observations point to molecular mimicry as a pervasive strategy employed by viruses and indicate that the protein structure space used by a given virus is dictated by the host proteome. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Coronavirus/genética , Interações Hospedeiro-Patógeno/genética , Mimetismo Molecular/genética , Proteínas Virais/genética , Viroma/genética , Viroses/genética , Animais , Coronavirus/química , Culicidae , Bases de Dados Genéticas , Humanos , Estrutura Secundária de Proteína , Proteínas Virais/química , Viroses/epidemiologia , Vírus/química , Vírus/genética
14.
mBio ; 12(5): e0247321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607456

RESUMO

Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by the FDA for emergency use, inhibit viral infection by targeting the receptor-binding domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines by evading neutralization. Therefore, therapies that are less susceptible to resistance are urgently needed. Here, we characterized the memory B-cell repertoire of COVID-19 convalescent donors and analyzed their RBD and non-RBD nAbs. We found that many of the non-RBD-targeting nAbs were specific to the N-terminal domain (NTD). Using neutralization assays with authentic SARS-CoV-2 and a recombinant vesicular stomatitis virus carrying SARS-CoV-2 S protein (rVSV-SARS2), we defined a panel of potent RBD and NTD nAbs. Next, we used a combination of neutralization-escape rVSV-SARS2 mutants and a yeast display library of RBD mutants to map their epitopes. The most potent RBD nAb competed with hACE2 binding and targeted an epitope that includes residue F490. The most potent NTD nAb epitope included Y145, K150, and W152. As seen with some of the natural VOC, the neutralization potencies of COVID-19 convalescent-phase sera were reduced by 4- to 16-fold against rVSV-SARS2 bearing Y145D, K150E, or W152R spike mutations. Moreover, we found that combining RBD and NTD nAbs did not enhance their neutralization potential. Notably, the same combination of RBD and NTD nAbs limited the development of neutralization-escape mutants in vitro, suggesting such a strategy may have higher efficacy and utility for mitigating the emergence of VOC. IMPORTANCE The U.S. FDA has issued emergency use authorizations (EUAs) for multiple investigational monoclonal antibody (MAb) therapies for the treatment of mild to moderate COVID-19. These MAb therapeutics are solely targeting the receptor-binding domain of the SARS-CoV-2 spike protein. However, the N-terminal domain of the spike protein also carries crucial neutralizing epitopes. Here, we show that key mutations in the N-terminal domain can reduce the neutralizing capacity of convalescent-phase COVID-19 sera. We report that a combination of two neutralizing antibodies targeting the receptor-binding and N-terminal domains may be beneficial to combat the emergence of virus variants.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/genética , COVID-19/imunologia , Mutação/imunologia , Motivos de Ligação ao RNA/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Humanos , Testes de Neutralização
15.
mSphere ; 6(2)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883259

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to place an immense burden on societies and health care systems. A key component of COVID-19 control efforts is serological testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior SARS-CoV-2 infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this sensitive test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test make it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.IMPORTANCE Serological surveillance has become an important public health tool during the COVID-19 pandemic. Detection of protective antibodies and seroconversion after SARS-CoV-2 infection or vaccination can help guide patient care plans and public health policies. Serology tests can detect antibodies against past infections; consequently, they can help overcome the shortcomings of molecular tests, which can detect only active infections. This is important, especially when considering that many COVID-19 patients are asymptomatic. In this study, we describe an enzyme-linked immunosorbent assay (ELISA)-based qualitative and quantitative serology test developed to measure IgG and IgA antibodies against the SARS-CoV-2 spike glycoprotein. The test can be deployed using commonly available laboratory reagents and equipment and displays high specificity and sensitivity. Furthermore, we demonstrate that IgG titers in patient samples can be estimated from a single measurement, enabling the assay's use in high-throughput clinical environments.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Especificidade de Anticorpos , COVID-19/epidemiologia , Teste Sorológico para COVID-19/estatística & dados numéricos , Estudos de Casos e Controles , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Monitoramento Epidemiológico , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
16.
Cell Host Microbe ; 28(3): 486-496.e6, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738193

RESUMO

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Avaliação Pré-Clínica de Medicamentos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Mutação , Testes de Neutralização , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Receptores Virais/genética , Receptores Virais/fisiologia , Recombinação Genética , SARS-CoV-2 , Serina Endopeptidases/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Internalização do Vírus , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
17.
bioRxiv ; 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32511365

RESUMO

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, and define correlates of immune protection, and to down-select candidate antivirals. Here, we describe a highly infectious recombinant vesicular stomatitis virus bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein that closely resembles the authentic agent in its entry-related properties. We show that the neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S and that neutralization of the rVSV and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific vaccines and therapeutics and for mechanistic studies of viral entry and its inhibition.

18.
medRxiv ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935116

RESUMO

The COVID-19 global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to place an immense burden on societies and healthcare systems. A key component of COVID-19 control efforts is serologic testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test makes it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.

19.
BMC Bioinformatics ; 10: 7, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19128472

RESUMO

BACKGROUND: The understanding of how promoter regions regulate gene expression is complicated and far from being fully understood. It is known that histones' regulation of DNA compactness, DNA methylation, transcription factor binding sites and CpG islands play a role in the transcriptional regulation of a gene. Many high-throughput techniques exist nowadays which permit the detection of epigenetic marks and regulatory elements in the promoter regions of thousands of genes. However, so far the subsequent analysis of such experiments (e.g. the resulting gene lists) have been hampered by the fact that currently no tool exists for a detailed analysis of the promoter regions. RESULTS: We present ContDist, a tool to statistically analyze quantitative gene and promoter properties. The software includes approximately 200 quantitative features of gene and promoter regions for 7 commonly studied species. In contrast to "traditionally" ontological analysis which only works on qualitative data, all the features in the underlying annotation database are quantitative gene and promoter properties.Utilizing the strong focus on the promoter region of this tool, we show its usefulness in two case studies; the first on differentially methylated promoters and the second on the fundamental differences between housekeeping and tissue specific genes. The two case studies allow both the confirmation of recent findings as well as revealing previously unreported biological relations. CONCLUSION: ContDist is a new tool with two important properties: 1) it has a strong focus on the promoter region which is usually disregarded by virtually all ontology tools and 2) it uses quantitative (continuously distributed) features of the genes and its promoter regions which are not available in any other tool. ContDist is available from http://web.bioinformatics.cicbiogune.es/CD/ContDistribution.php.


Assuntos
Regiões Promotoras Genéticas , Algoritmos , Animais , Cromatina/química , Biologia Computacional/métodos , Ilhas de CpG , DNA/química , Metilação de DNA , Epigênese Genética , Genes , Humanos , Camundongos , Modelos Genéticos , Ratos , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa