Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Org Biomol Chem ; 17(15): 3765-3780, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30887974

RESUMO

Dyes with nonlinear optical (NLO) properties enable new imaging techniques and photonic systems. We have developed a dye (DANPY-1) for photonics applications in biological substrates such as nucleic acids; however, the design specification also enables it to be used for visualizing biomolecules. It is a prototype dye demonstrating a water-soluble, NLO-active fluorophore with high photostability, a large Stokes shift, and a favorable toxicity profile. A practical and scalable synthetic route to DANPY salts has been optimized featuring: (1) convergent Pd-catalyzed Suzuki coupling with pyridine 4-boronic acid, (2) site-selective pyridyl N-methylation, and (3) direct recovery of crystalline intermediates without chromatography. We characterize the optical properties, biocompatibility, and biological staining behavior of DANPY-1. In addition to stability and solubility across a range of polar media, the DANPY-1 chromophore shows a first hyperpolarizability similar to common NLO dyes such as Disperse Red 1 and DAST, a large two-photon absorption cross section for its size, substantial affinity to nucleic acids in vitro, an ability to stain a variety of cellular components, and strong sensitivity of its fluorescence properties to its dielectric environment.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Naftalenos/química , Fármacos Fotossensibilizantes/química , Piridinas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Piridinas/síntese química , Piridinas/farmacologia
2.
Biotechnol Bioeng ; 114(6): 1301-1309, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165133

RESUMO

A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background. This workflow yielded a strain that has a ∼70% increase in biomass yield and ∼240% increase in xylose utilization. Finally, we chromosomally integrated the expression library. This library enriched for strains with multiple integrations of the pathway, which likely were the result of tandem integrations mediated by promoter homology. Biotechnol. Bioeng. 2017;114: 1301-1309. © 2017 Wiley Periodicals, Inc.


Assuntos
Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Complexos Multienzimáticos/genética , Saccharomyces cerevisiae/fisiologia , Xilose/metabolismo , Técnicas de Química Combinatória , Simulação por Computador , Metabolismo , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Angew Chem Int Ed Engl ; 55(39): 11824-8, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27570932

RESUMO

We describe herein formal syntheses of the indole alkaloids cis-trikentrin A and herbindole B from a common meso-hydroquinone intermediate prepared by a ruthenium-catalyzed [2+2+1+1] cycloaddition that has not been used previously in natural product synthesis. Key steps include a sterically demanding Buchwald-Hartwig amination as well as a unique C(sp(3) )-H amination/indole formation. Studies toward a selective desymmetrization of the meso-hydroquinone are also reported.

4.
Metab Eng ; 25: 20-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24930894

RESUMO

Fermentation of xylose, a major constituent of lignocellulose, will be important for expanding sustainable biofuel production. We sought to better understand the effects of intrinsic (genotypic) and extrinsic (growth conditions) variables on optimal gene expression of the Scheffersomyces stipitis xylose utilization pathway in Saccharomyces cerevisiae by using a set of five promoters to simultaneously regulate each gene. Three-gene (xylose reductase, xylitol dehydrogenase (XDH), and xylulokinase) and eight-gene (expanded with non-oxidative pentose phosphate pathway enzymes and pyruvate kinase) promoter libraries were enriched under aerobic and anaerobic conditions or with a mutant XDH with altered cofactor usage. Through characterization of enriched strains, we observed (1) differences in promoter enrichment for the three-gene library depending on whether the pentose phosphate pathway genes were included during the aerobic enrichment; (2) the importance of selection conditions, where some aerobically-enriched strains underperform in anaerobic conditions compared to anaerobically-enriched strains; (3) improved growth rather than improved fermentation product yields for optimized strains carrying the mutant XDH compared to the wild-type XDH.


Assuntos
Técnicas de Química Combinatória/métodos , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Melhoramento Genético/métodos , Complexos Multienzimáticos/fisiologia , Saccharomyces cerevisiae/fisiologia , Xilose/metabolismo , Proliferação de Células/fisiologia , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética
5.
ACS Synth Biol ; 9(10): 2775-2783, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32886882

RESUMO

Biochemical protecting groups are observed in natural metabolic pathways to control reactivity and properties of chemical intermediates; similarly, they hold promise as a tool for metabolic engineers to achieve the same goals. Protecting groups come with costs: lower yields from carbon, metabolic load to the production host, deprotection catalyst costs and kinetics limitations, and wastewater treatment of the group. Compared to glycosyl biochemical protection, such as glucosyl groups, acetylation can mitigate each of these costs. As an example application where these benefits could be valuable, we explored acetylation protection of indoxyl, the reactive precursor to the clothing dye, indigo. First, we demonstrated denim dyeing with chemically sourced indoxyl acetate by deprotection with base, showing results comparable to industry-standard denim dyeing. Second, we modified an Escherichia coli production host for improved indoxyl acetate stability by the knockout of 14 endogenous hydrolases. Cumulatively, these knockouts yielded a 67% reduction in the indoxyl acetate hydrolysis rate from 0.22 mmol/g DCW/h to 0.07 mmol/g DCW/h. To biosynthesize indoxyl acetate, we identified three promiscuous acetyltransferases which acetylate indoxyl in vivo. Indoxyl acetate titer, while low, was improved 50%, from 43 µM to 67 µM, in the hydrolase knockout strain compared to wild-type E. coli. Unfortunately, low millimolar concentrations of indoxyl acetate proved to be toxic to the E. coli production host; however, the principle of acetylation as a readily cleavable and low impact biochemical protecting group and the engineered hydrolase knockout production host should prove useful for other metabolic products.


Assuntos
Corantes/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Índigo Carmim/metabolismo , Indóis/metabolismo , Engenharia Metabólica/métodos , Acetilação , Acetiltransferases/metabolismo , Técnicas de Inativação de Genes , Hidrolases/genética , Hidrólise
6.
Nat Commun ; 9(1): 5059, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498222

RESUMO

Pectin-rich biomasses, such as citrus peel and sugar beet pulp, hold promise as inexpensive feedstocks for microbial fermentations as enzymatic hydrolysis of their component polysaccharides can be accomplished inexpensively to yield high concentrations of fermentable sugars and D-galacturonic acid (D-galUA). In this study, we tackle a number of challenges associated with engineering a microbial strain to convert pectin-rich hydrolysates into commodity and specialty chemicals. First, we engineer D-galUA utilization into yeast, Saccharomyces cerevisiae. Second, we identify that the mechanism of D-galUA uptake into yeast is mediated by hexose transporters and that consumption of D-galUA is inhibited by D-glucose. Third, we enable co-utilization of D-galUA and D-glucose by identifying and expressing a heterologous transporter, GatA, from Aspergillus niger. Last, we demonstrate the use of this transporter for production of the platform chemical, meso-galactaric acid, directly from industrial Navel orange peel waste.


Assuntos
Citrus/metabolismo , Glucose/metabolismo , Ácidos Hexurônicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aspergillus niger/metabolismo , Fermentação/genética , Fermentação/fisiologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa