Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Neurochem ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822150

RESUMO

Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.

2.
Am J Hum Genet ; 103(5): 666-678, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343943

RESUMO

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.


Assuntos
Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Contratura/genética , Discinesias/genética , Epilepsia/genética , Variação Genética/genética , Megalencefalia/genética , Espasmos Infantis/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/genética
4.
J Fungi (Basel) ; 8(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35049958

RESUMO

Scedosporium (S.) apiospermum is a typical mold causing cerebral abscesses, often after near-drowning. Infections are associated with high morbidity and mortality due to diagnostic challenges including the need for prolonged incubation of cultures. In addition, histopathological differentiation from other filamentous fungi, including Aspergillus fumigatus, may not be possible, excluding early specific diagnosis and targeted therapy. Polymerase chain reaction (PCR) on tissue samples can rapidly identify fungi, leading to an earlier adequate treatment. Due to an extensive spectrum of causative fungi, broad-range PCRs with amplicon sequencing have been endorsed as the best DNA amplification strategy. We herein describe a case with brain abscesses due to S. apiospermum in a 66-year-old immunocompromised female patient. While broad-range PCR failed to identify a fungal pathogen from a cerebral biopsy demonstrating hyaline mold hyphae, specific quantitative PCR (qPCR) identified Scedosporium and ruled out Aspergillus, the most prevalent agent of central nervous system mold infection. A panel of specific qPCR assays, guided by the morphology of fungal elements in tissue or as a multiplex assay, may be a successful molecular approach to identify fungal agents of brain abscesses. This also applies in the presence of negative broad-range fungal PCR, therefore providing diagnostic and therapeutic potential for early specific management and improvement of patient clinical outcome.

5.
MMW Fortschr Med ; 163(4): 9, 2021 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-33638819
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa