Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 32(5): 7882-7895, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439458

RESUMO

The intricate optical distortions that occur when light interacts with complex media, such as few- or multi-mode optical fiber, often appear random in origin and are a fundamental source of error for communication and sensing systems. We propose the use of orbital angular momentum (OAM) feature extraction to mitigate phase-noise and allow for the use of intermodal-coupling as an effective tool for fiber sensing. OAM feature extraction is achieved by passive all-optical OAM demultiplexing, and we demonstrate fiber bend tracking with 94.1% accuracy. Conversely, an accuracy of only 14% was achieved for determining the same bend positions when using a convolutional-neural-network trained with intensity measurements of the output of the fiber. Further, OAM feature extraction used 120 times less information for training compared to intensity image based measurements. This work indicates that structured light enhanced machine learning could be used in a wide range of future sensing technologies.

2.
Opt Lett ; 48(13): 3575-3578, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390184

RESUMO

We experimentally demonstrated, for, it is believed, the first time, high-capacity polarization- and mode-division multiplexing free-space optical transmission with adequate strong turbulence resiliency. A compact spatial light modulator-based polarization multiplexing multi-plane light conversion module was employed to emulate strong turbulent links. By employing advanced successive interference cancellation multiple-input multiple-output decoder and redundant receive channels, the strong turbulence resiliency was significantly improved in a mode-division multiplexing system. As a result, we achieved a record-high line rate of 689.2 Gbit/s, channel number of 10, and net spectral efficiency of 13.9 bit/(s Hz) in a single-wavelength mode-division multiplexing system with strong turbulence.


Assuntos
Comunicação
3.
Opt Express ; 30(3): 4165-4178, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209659

RESUMO

A double-passage propagation model of partially coherent Laguerre-Gaussian (LG) vortex beams with orbital angular momentum (OAM) modes in turbulent atmosphere after scattering from Gaussian rough surfaces was formulated. Rough surface scattering had a weak effect on the spreading of a vortex beam in turbulent atmosphere. However, it severely influenced the phase on this beam, rapidly reducing the original OAM mode's relative intensity. The OAM spectrum information is more useful than the intensity information for rough surface object remote sensing. Additionally, by comparing the scattering intensity in monostatic and bistatic systems, the enhanced backscatter of vortex beams from Gaussian rough surfaces was verified.

4.
Opt Express ; 28(21): 31714-31728, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115138

RESUMO

Light trapping is a commonly used technique for enhancing the efficiency of solar collection in many photovoltaic (PV) devices. In this paper, we present the design of multi-layer light trapping structures that can potentially be retrofitted, or directly integrated, onto crystalline or amorphous silicon solar panels for enhanced optical collection at normal and extreme angle of incidence. This approach can improve the daily optical collection performance of solar panel with and without internally integrated light trapping structure by up to 7.18% and 159.93%, respectively. These improvements predict an enhancement beyond many research level and commercially deployed light trapping technologies. We further enhance this performance by combining our multi-layer optics with high refractive index materials to achieve a daily optical collection of up to 32.20% beyond leading light trapping structures. Our additive light trapping designs could enable the upgradeability of older PV technologies and can be tailored to optimally operate at unique angular ranges for building exteriors or over a wide range of incidence angle for applications such as unmanned aerial vehicles.

5.
Opt Express ; 27(7): 10383-10394, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045181

RESUMO

The dimension of the state space for information encoding offered by the transverse structure of light is usually limited by the finite size of apertures. The widely used orbital angular momentum (OAM) number of Laguerre-Gaussian (LG) modes in free-space communications cannot achieve the theoretical maximum transmission capacity unless the radial degree of freedom is multiplexed into the protocol. While the methodology to sort the radial quantum number has been developed, the application of radial modes in quantum communications requires an additional ability to efficiently measure the superposition of LG modes in the mutually unbiased basis. Here we develop and implement a generic mode sorter that is capable of sorting the superposition of LG modes through the use of a mode converter. As a consequence, we demonstrate an 8-dimensional quantum key distribution experiment involving all three transverse degrees of freedom: spin, azimuthal, and radial quantum numbers of photons. Our protocol presents an important step towards the goal of reaching the capacity limit of a free-space link and can be useful to other applications that involve spatial modes of photons.

6.
Opt Express ; 24(16): 18105-13, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505776

RESUMO

Free-space optical communication with spatial modes of light has become topical due to the possibility of dramatically increasing communication bandwidth via Mode Division Multiplexing (MDM). While both scalar and vector vortex modes have been used as transmission bases, it has been suggested that the latter is more robust in turbulence. Using orbital angular momentum as an example, we demonstrate theoretically and experimentally that the crosstalk due to turbulence is the same in the scalar and vector basis sets of such modes. This work brings new insights about the behaviour of vector and scalar modes in turbulence, but more importantly it demonstrates that when considering optimal modes for MDM, the choice should not necessarily be based on their vectorial nature.

7.
Opt Lett ; 41(5): 851-4, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974062

RESUMO

We demonstrate a 280 Gbit/s free-space space-division-multiplexing communications link incorporating a set of independent tilted truncated plane-waves, each generated by a single mode fiber placed at the back-focal plane of a spherical lens. Each of the seven tilted plane-wave channels are encoded with a 40 Gbit/s 16-QAM signal. Our approach comprises two identical linear fiber-arrays placed approximately 5 m apart. As each fiber array is placed at the back-focal-plane of a spherical lens, each fiber array is effectively placed in a conjugate image plane of the other. A channel crosstalk of less than 26 dB is shown, with a bit-error-rate below the FEC threshold of 3.8×10(-3).

8.
Opt Lett ; 41(3): 622-5, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907439

RESUMO

We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 µrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

9.
Appl Opt ; 55(8): 2098-103, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26974808

RESUMO

In this paper, we explore the potential benefits and limitations of using transmitter lenses in an orbital-angular-momentum (OAM)-multiplexed free-space optical (FSO) communication link. Both simulation and experimental results indicate that within certain transmission distances, using lenses at the transmitter to focus OAM beams could reduce power loss in OAM-based FSO links and that this improvement might be more significant for higher-order OAM beams. Moreover, the use of transmitter lenses could enhance system tolerance to angular error between transmitter and receiver, but they might degrade tolerance to lateral displacement.

10.
Opt Lett ; 40(10): 2249-52, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393711

RESUMO

We investigate the sensing of a data-carrying Gaussian beacon on a separate wavelength as a means to provide the information necessary to compensate for the effects of atmospheric turbulence on orbital angular momentum (OAM) and polarization-multiplexed beams in a free-space optical link. The influence of the Gaussian beacon's wavelength on the compensation of the OAM beams at 1560 nm is experimentally studied. It is found that the compensation performance degrades slowly with the increase in the beacon's wavelength offset, in the 1520-1590 nm band, from the OAM beams. Using this scheme, we experimentally demonstrate a 1 Tbit/s OAM and polarization-multiplexed link through emulated dynamic turbulence with a data-carrying beacon at 1550 nm. The experimental results show that the turbulence effects on all 10 data channels, each carrying a 100 Gbit/s signal, are mitigated efficiently, and the power penalties after compensation are below 5.9 dB for all channels. The results of our work might be helpful for the future implementation of a high-capacity OAM, polarization and wavelength-multiplexed free-space optical link that is affected by atmospheric turbulence.

11.
Opt Lett ; 40(7): 1197-200, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831291

RESUMO

A stochastic-parallel-gradient-descent algorithm (SPGD) based on Zernike polynomials is proposed to generate the phase correction pattern for a distorted orbital angular momentum (OAM) beam. The Zernike-polynomial coefficients for the correction pattern are obtained by monitoring the intensity profile of the distorted OAM beam through an iteration-based feedback loop. We implement this scheme and experimentally show that the proposed approach improves the quality of the turbulence-distorted OAM beam. Moreover, we apply phase correction patterns derived from a probe OAM beam through emulated turbulence to correct other OAM beams transmitted through the same turbulence. Our experimental results show that the patterns derived this way simultaneously correct multiple OAM beams propagating through the same turbulence, and the crosstalk among these modes is reduced by more than 5 dB.

12.
Opt Lett ; 40(9): 1980-3, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927763

RESUMO

Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. In this work, the spatially inhomogeneous states of polarization of vector modes are used to increase the transmission data rate of free-space optical communication via mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal q-plate is introduced. As a proof of principle, four vector modes each carrying a 20-Gbit/s quadrature phase shift keying signal (aggregate 80 Gbit/s) on a single wavelength channel (λ∼1550 nm) were transmitted ∼1 m over the lab table with <-16.4 dB mode crosstalk. Bit error rates for all vector modes were measured at the 7% forward error correction threshold with power penalties <3.41 dB.

13.
Opt Lett ; 39(10): 2944-6, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978243

RESUMO

It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular Doppler shift induces no change in the angular momentum. Further, we examine the rotational Doppler shift in frequency imparted to the incident light due to the relative motion of the beam with respect to the observer and consider what must happen to the measured wavelength if the speed of light c is to remain constant. We show specifically that the OAM of the incident beam is not affected by the rotating observer and that the measured wavelength is shifted by a factor equal and opposite to that of the frequency shift induced by the rotational Doppler effect.

14.
Opt Lett ; 39(6): 1689-92, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690870

RESUMO

We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

15.
Opt Lett ; 39(2): 197-200, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562105

RESUMO

We investigate the orthogonality of orbital angular momentum (OAM) with other multiplexing domains and present a free-space data link that uniquely combines OAM-, polarization-, and wavelength-division multiplexing. Specifically, we demonstrate the multiplexing/demultiplexing of 1008 data channels carried on 12 OAM beams, 2 polarizations, and 42 wavelengths. Each channel is encoded with 100 Gbit/s quadrature phase-shift keying data, providing an aggregate capacity of 100.8 Tbit/s (12×2×42×100 Gbit/s).

16.
Opt Lett ; 39(10): 2845-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978218

RESUMO

We propose an adaptive optics compensation scheme to simultaneously compensate multiple orbital angular momentum (OAM) beams propagating through atmospheric turbulence. A Gaussian beam on one polarization is used to probe the turbulence-induced wavefront distortions and derive the correction pattern for compensating the OAM beams on the orthogonal polarization. By using this scheme, we experimentally demonstrate simultaneous compensation of multiple OAM beams, each carrying a 100 Gbit/s data channel through emulated atmospheric turbulence. The experimental results indicate that the correction pattern obtained from the Gaussian probe beam could be used to simultaneously compensate multiple turbulence-distorted OAM beams with different orders. It is found that the turbulence-induced crosstalk effects on neighboring modes are efficiently reduced by 12.5 dB, and the system power penalty is improved by 11 dB after compensation.

17.
Opt Lett ; 38(24): 5240-3, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322227

RESUMO

We demonstrate reconfigurable orbital angular momentum (OAM) and polarization manipulation of OAM- and polarization-multiplexed 100 Gbit/s quadrature phase shift keying (QPSK) data channels. Each data channel's OAM value and its polarization state can be arbitrarily changed by taking advantage of the unique wavefront profile of OAM beams using liquid crystal on silicon-based spatial light modulators. The manipulation operation introduces a power penalty of <1 dB for 100 Gbit/s QPSK signals.

18.
Opt Lett ; 38(20): 4062-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321923

RESUMO

We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver. The power penalty is found to exceed 10 dB in a weak-to-medium turbulence condition due to the turbulence-induced crosstalk and power fluctuation of the received signal.

19.
Opt Express ; 20(3): 2110-5, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330451

RESUMO

We have developed a mode transformer comprising two custom refractive optical elements which convert orbital angular momentum states into transverse momentum states. This transformation allows for an efficient measurement of the orbital angular momentum content of an input light beam. We characterise the channel capacity of the system for 50 input modes, giving a maximum value of 3.46 bits per photon. Using an electron multiplying CCD (EMCCD) camera with a laser source attenuated such that on average there is less than one photon present within the system per measurement period, we demonstrate that the elements are efficient for the use in single photon experiments.


Assuntos
Lentes , Iluminação/instrumentação , Modelos Teóricos , Fótons , Refratometria/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
20.
Opt Express ; 20(12): 13195-200, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714347

RESUMO

We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa