Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Physiol ; 596(19): 4665-4680, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035314

RESUMO

KEY POINTS: The female hormone oestrogen may protect muscle from injury by reducing inflammation but this is debatable. In this study, the inflammatory response of injured muscle from oestrogen-replete mice was comprehensively compared to that from oestrogen-deficient mice. We show that oestrogen markedly promotes movement of neutrophils, an inflammatory white blood cell type, into muscle over the first few days after injury but has only a minor effect on the movement of macrophages, another inflammatory cell type. Despite the enhancement of inflammation by oestrogen in injured muscle, we found strength in oestrogen-replete mice to recover faster and to a greater extent than it does in oestrogen-deficient mice. Our study and others indicate that lower doses of oestrogen, such as that used in our study, may affect muscle inflammation and injury differently from higher doses. ABSTRACT: Oestrogen has been shown to protect against skeletal muscle injury and a reduced inflammatory response has been suggested as a possible protective mechanism. There are, however, dissenting reports. Our objective was to conduct an unbiased, comprehensive study of the effect of oestradiol on the inflammatory response following muscle injury. Female C57BL6/J mice were ovariectomized and supplemented with and without oestradiol. Tibialis anterior muscles were freeze injured and studied primarily at 1-4 days post-injury. Oestradiol supplementation increased injured muscle gene expression of neutrophil chemoattractants (Cxcl1 and Cxcl5) and to a lesser extent that of monocyte/macrophage chemoattractants (Ccl2 and Spp1). Oestradiol markedly increased gene expression of the neutrophil cell surface marker (Ly6g) but had less consistent effects on the monocyte/macrophage cell surface markers (Cd68, Cd163 and Cd206). These results were confirmed at the protein level by immunoblot with oestradiol increasing LY6G/C content and having no significant effect on CD163 content. These findings were confirmed with fluorescence-activated cell sorting counts of neutrophils and macrophages in injured muscles; oestradiol increased the proportion of CD45+ cells that were neutrophils (LY6G+ ) but not the proportion that were macrophages (CD68+ or CD206+ ). Physiological impact of the oestradiol-enhanced neutrophil response was assessed by strength measurements. There was no significant difference in strength between oestradiol-supplemented and -unsupplemented mice until 2 weeks post-injury; strength was 13-24% greater in supplemented mice at 2-6 weeks post-injury. In conclusion, a moderate level of oestradiol supplementation enhances neutrophil infiltration in injured muscle and this is associated with a beneficial effect on strength recovery.


Assuntos
Estradiol/metabolismo , Inflamação/prevenção & controle , Força Muscular , Músculo Esquelético/fisiologia , Doenças Musculares/prevenção & controle , Neutrófilos/fisiologia , Recuperação de Função Fisiológica , Animais , Biomarcadores/análise , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Estrogênios , Feminino , Perfilação da Expressão Gênica , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/imunologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Doenças Musculares/imunologia , Doenças Musculares/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Osteopontina/genética , Osteopontina/metabolismo
2.
J Appl Physiol (1985) ; 134(3): 722-730, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735234

RESUMO

Estradiol affects several properties of skeletal muscle in females including strength. Here, we developed an approach to measure in vivo posttetanic twitch potentiation (PTP) of the anterior crural muscles of anesthetized mice and tested the hypothesis that 17ß-estradiol (E2) enhances PTP through estrogen receptor (ER) signaling. Peak torques of potentiated twitches were ∼40%-60% greater than those of unpotentiated twitches and such PTP was greater in ovary-intact mice, or ovariectomized (Ovx) mice treated with E2, compared with Ovx mice (P ≤ 0.047). PTP did not differ between mice with and without ERα ablated in skeletal muscle fibers (P = 0.347). Treatment of ovary-intact and Ovx mice with ERß antagonist and agonist (PHTPP and DPN, respectively) did not affect PTP (P ≥ 0.258). Treatment with G1, an agonist of the G protein-coupled estrogen receptor (GPER), significantly increased PTP in Ovx mice from 41 ± 10% to 66 ± 21% (means ± SD; P = 0.034). Collectively, these data indicate that E2 signals through GPER, and not ERα or ERß, in skeletal muscles of female mice to augment an in vivo parameter of strength, namely, PTP.NEW & NOTEWORTHY A novel in vivo approach was developed to measure potentiation of skeletal muscle torque in female mice and highlight another parameter of strength that is impacted by estradiol. The enhancement of PTP by estradiol is mediated distinctively through the G-protein estrogen receptor, GPER.


Assuntos
Estradiol , Receptores de Estrogênio , Camundongos , Feminino , Animais , Humanos , Estradiol/farmacologia , Receptor beta de Estrogênio/agonistas , Torque , Estrogênios , Músculo Esquelético , Receptor alfa de Estrogênio , Receptores Acoplados a Proteínas G , Ovariectomia
3.
Cell Death Differ ; 29(9): 1744-1756, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35217789

RESUMO

Cellular retinoic acid-binding protein 1 (CRABP1) binds retinoic acid (RA) specifically in the cytoplasm with unclear functions. CRABP1 is highly and specifically expressed in spinal motor neurons (MNs). Clinical and pre-clinical data reveal a potential link between CRABP1 and MN diseases, including the amyotrophic lateral sclerosis (ALS). We established a sequenced MN-muscle co-differentiation system to engineer an in vitro functional 3D NMJ model for molecular studies and demonstrated that CRABP1 in MNs contributes to NMJ formation and maintenance. Consistently, Crabp1 knockout (CKO) mice exhibited an adult-onset ALS-like phenotype with progressively deteriorated NMJs, characterized with behavioral, EchoMRI, electrophysiological, histological, and immunohistochemical studies at 2-20-months old. Mechanistically, CRABP1 suppresses CaMKII activation to regulate neural Agrn expression and downstream muscle LRP4-MuSK signaling, thereby maintaining NMJ. A proof-of-concept was provided by specific re-expression of CRABP1 to rescue Agrn expression and the phenotype. This study identifies CRABP1-CaMKII-Agrn signaling as a physiological pre-synaptic regulator in the NMJ. This study also highlights a potential protective role of CRABP1 in the progression of NMJ deficits in MN diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Agrina/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Receptores do Ácido Retinoico/metabolismo
4.
Exp Gerontol ; 147: 111267, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548486

RESUMO

BACKGROUND: Menopause leads to estradiol (E2) deficiency that is associated with decreases in muscle mass and strength. Here we studied the effect of E2 deficiency on microRNA (miR) signaling that targets apoptotic pathways. METHODS: C57BL6 mice were divided into control (normal estrous cycle, n = 8), OVX (E2 deficiency, n = 7) and OVX + E2 groups (E2-pellet, n = 4). Six weeks following the OVX surgery, mice were sacrificed and RNA isolated from gastrocnemius muscles. miR-profiles were studied with Next-Generation Sequencing (NGS) and candidate miRs verified using qPCR. The target proteins of the miRs were found using in silico analysis and measured at mRNA (qPCR) and protein levels (Western blot). RESULTS: Of the apoptosis-linked miRs present, eleven (miRs-92a-3p, 122-5p, 133a-3p, 214-3p, 337-3p, 381-3p, 483-3p, 483-5p, 491-5p, 501-5p and 652-3p) indicated differential expression between OVX and OVX + E2 mice in NGS analysis. In qPCR verification, muscle from OVX mice had lower expression of all eleven miRs compared with OVX + E2 (p < 0.050). Accordingly, OVX had higher expression of cytochrome C and caspases 6 and 9 compared with OVX + E2 at the mRNA level (p < 0.050). At the protein level, OVX also had lower anti-apoptotic BCL-W and greater pro-apoptotic cytochrome C and active caspase 9 compared with OVX + E2 (p < 0.050). CONCLUSION: E2 deficiency downregulated several miRs related to apoptotic pathways thus releasing their targets from miR-mediated suppression, which may lead to increased apoptosis and contribute to reduced skeletal muscle mass.


Assuntos
Estradiol , MicroRNAs , Animais , Apoptose , Estradiol/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Esquelético
5.
J Endocrinol ; 248(2): 181-191, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33295882

RESUMO

The actions of selective estrogen receptor modulators are tissue dependent. The primary objective of the current study was to determine the tissue selective effects of bazedoxifene (BZA) on the musculoskeletal system of ovariectomized (OVX) female mice, focusing on the strengths of muscle-bone pairs in the lower hindlimb. Treatment with BZA after ovariectomy (OVX+BZA) did not prevent body or fat mass gains (P < 0.05). In vivo plantarflexor muscle isometric torque was not affected by treatment with BZA (P = 0.522). Soleus muscle peak isometric, concentric and eccentric tetanic force production were greater in OVX+BZA mice compared to OVX+E2 mice (P ≤ 0.048) with no effect on maximal isometric specific force (P = 0.228). Tibia from OVX+BZA mice had greater cortical cross-sectional area and moment of inertia than OVX mice treated with placebo (P < 0.001), but there was no impact of BZA treatment on cortical bone mineral density, cortical thickness, tibial bone ultimate load or stiffness (P ≥ 0.086). Overall, these results indicate that BZA may be an estrogen receptor agonist in skeletal muscle, as it has previously been shown in bone, providing minor benefits to the musculoskeletal system.


Assuntos
Estrogênios/farmacologia , Indóis/farmacologia , Atividade Motora/efeitos dos fármacos , Sistema Musculoesquelético/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Ovariectomia , Distribuição Aleatória , Tíbia/efeitos dos fármacos
6.
J Physiol ; 588(Pt 22): 4563-78, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20819945

RESUMO

The present study was performed to investigate the effect of acidosis on the efflux of ATP from skeletal muscle. Infusion of lactic acid to the perfused hindlimb muscles of anaesthetised rats produced dose-dependent decreases in pH and increases in the interstitial ATP of extensor digitorum longus (EDL) muscle: 10 mM lactic acid reduced the venous pH from 7.22 ± 0.04 to 6.97 ± 0.02 and increased interstitial ATP from 38 ± 8 to 67 ± 11 nM. The increase in interstitial ATP was well-correlated with the decrease in pH (r(2) = 0.93; P < 0.05). Blockade of cellular uptake of lactic acid using α-cyano-hydroxycinnamic acid abolished the lactic acid-induced ATP release, whilst infusion of sodium lactate failed to depress pH or increase interstitial ATP, suggesting that intracellular pH depression, rather than lactate, stimulated the ATP efflux. Incubation of cultured skeletal myoblasts with 10 mM lactic acid significantly increased the accumulation of ATP in the bathing medium from 0.46 ± 0.06 to 0.76 ± 0.08 µM, confirming the skeletal muscle cells as the source of the released ATP. Acidosis-induced ATP efflux from the perfused muscle was abolished by CFTR(inh)-172, a specific inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), or glibenclamide, an inhibitor of both K(ATP) channels and CFTR, but it was not affected by atractyloside, an inhibitor of the mitochondrial ATP transporter. Silencing of the CFTR gene using an siRNA abolished the acidosis-induced increase in ATP release from cultured myoblasts. CFTR expression on skeletal muscle cells was confirmed using immunostaining in the intact muscle and Western blotting in the cultured cells. These data suggest that depression of the intracellular pH of skeletal muscle cells stimulates ATP efflux, and that CFTR plays an important role in the release mechanism.


Assuntos
Acidose Láctica/metabolismo , Trifosfato de Adenosina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Músculo Esquelético/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Inativação Gênica/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Exp Gerontol ; 115: 155-164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30415069

RESUMO

Menopause is associated with declines in physical activity and skeletal muscle strength. Physical activity is also reduced in rodents after ovariectomy (OVX) and whole-body estrogen receptor α (ERα) knockout. However, it is unclear if the effects are estradiol (E2) specific. Thus, the overall purpose of this study was to investigate the effects of the ovarian hormones, E2 and progesterone (P4), and skeletal muscle ERα (skmERα) on physical activity and skeletal muscle contractility in female mice. METHODS: Study 1: Forty female C57Bl/6J mice were given free access to running wheels for 2 weeks to assess baseline running and randomized into 4 treatment groups: OVX, OVX + E2, OVX + P4, OVX + E2 + P4. All mice underwent OVX, returned to wheels for 2 weeks, received hormone pellet implants and returned to running wheels for 6 weeks, after which soleus muscle contractility testing was completed. Study 2: Thirty-two skeletal muscle specific ERα knock-out (skmERαKO) mice and wildtype (WT) littermates were randomized into 4 groups: skmERαKO-Run, skmERαWT-Run, skmERαKO-Sed, and skmERαWT-Sed. Run mice were given free access to wheels for 20 wk and sedentary (Sed) mice maintained normal cage activities. At the end point, muscle contractility was tested. RESULTS: Study 1: OVX + E2 + P4 group ran greater distances than both the OVX and OVX + P4 groups (p ≤ 0.009). After fatiguing contractions, soleus muscles of the OVX + E2 + P4 group maintained greater submaximal force than those of other groups (p = 0.023). Immediately after the fatiguing contractions, OVX + E2 + P4 muscles had greater maximal force production than the OVX + E2 group (p = 0.027). Study 2: There were no differences in running distance between skmERαWT and skmERαKO mice (p = 0.240). Soleus muscles of skmERαKO mice were more fatigable (p < 0.001) and did not recover force as well as skmERαWT mice (p < 0.001). In vivo isometric, concentric and eccentric torque was decreased in skmERαKO mice compared to skmERαWT mice (p ≤ 0.029). CONCLUSIONS: Combined treatment of E2 + P4 in OVX mice restored physical activity, predominantly driven by E2, and protected soleus muscles against fatigue. Muscle of skmERαKO mice was weak regardless of physical activity. Although 20 wk of wheel running partially prevented force loss during fatigue in skmERαKO mice, force production during recovery remained low, indicating that estradiol functions through ERα in skeletal muscle.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ovariectomia , Animais , Cromatografia Líquida , Estrogênios/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Força Muscular/fisiologia , Condicionamento Físico Animal , Progesterona/farmacologia , Progestinas/farmacologia , Distribuição Aleatória , Espectrometria de Massas em Tandem , Torque
8.
Methods Mol Biol ; 1460: 33-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27492163

RESUMO

Freeze injury is physically induced by exposing skeletal muscle to an extremely cold probe, and results in a robust degenerative and inflammatory response. One unique aspect of freeze injury is that it destroys not only the muscle fiber cells, but also all of the mononuclear cells in the zone of injury. Repair of the muscle is accomplished by satellite cells from outside of the zone of injury, which must migrate in and which may interact with inflammatory cells, hence the length of time before apparent histological recovery of the most damaged zone is typically somewhat longer with freeze injury than with other physical or chemical methods of injury. In this chapter, we present a detailed protocol for the freeze injury of the tibialis anterior (TA) muscle in mouse.


Assuntos
Congelamento/efeitos adversos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Força Muscular
9.
Br J Pharmacol ; 139(8): 1449-61, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12922932

RESUMO

1. The mechanism of contraction of guinea-pig isolated aorta induced by the prostanoid EP(3) receptor agonist sulprostone (0.1-300 nM) has been investigated. In 60% of the experiments, the sulprostone log concentration-response curve (maximum=15-40% of 100 nM U-46619 response; low-responders) was unaffected by the removal of extracellular Ca(2+), blockade of L-type Ca(2+) channels with nifedipine and depletion of internal Ca(2+) stores. In the remaining preparations (35-65% of 100 nM U-46619 response; high-responders), contractions to higher sulprostone concentrations showed a nifedipine-sensitive component, which was enhanced by charybdotoxin. 2. In Ca(2+)-free Krebs solution, established contractions to 300 nM sulprostone were abolished by the Rho-kinase inhibitors H-1152, Y-27632 and HA-1077 (IC(50) values=190, 770 and 2030 nM). The PKA/Rho-kinase inhibitor H-89 (10 nM-10 micro M) caused enhancement progressing to inhibition. The selective PKC inhibitor Ro 32-0432 (3 micro M) had no effect, while staurosporine, recently shown to be a potent Rho-kinase inhibitor, abolished sulprostone responses (IC(50) approximately 47 nM), but its action was slow. The MAP kinase inhibitors SB 202190, SB 203580 and PD 80958 produced little inhibition. 3. In normal Krebs solution, H-1152 and Y-27632 abolished established contractions to 300 nM sulprostone and 1 micro M phenylephrine, and partially inhibited 10 micro M phenylephrine and 50 mM K(+) responses. 4. The results are discussed in relation to the reported potencies of the protein kinase inhibitors in enzyme assays. Activation of the Rho-kinase pathway appears to be a primary mechanism of contraction induced by EP(3) receptor agonists in guinea-pig aorta.


Assuntos
Aorta Torácica/efeitos dos fármacos , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Contração Muscular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Prostaglandina E/agonistas , Animais , Aorta Torácica/enzimologia , Aorta Torácica/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Cobaias , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/metabolismo , Nifedipino/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP3 , Quinases Associadas a rho
10.
Cell Stem Cell ; 12(5): 587-601, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23642367

RESUMO

Mesp1 is regarded as the master regulator of cardiovascular development, initiating the cardiac transcription factor cascade to direct the generation of cardiac mesoderm. To define the early embryonic cell population that responds to Mesp1, we performed pulse inductions of gene expression over tight temporal windows following embryonic stem cell differentiation. Remarkably, instead of promoting cardiac differentiation in the initial wave of mesoderm, Mesp1 binds to the Tal1 (Scl) +40 kb enhancer and generates Flk-1+ precursors expressing Etv2 (ER71) and Tal1 that undergo hematopoietic differentiation. The second wave of mesoderm responds to Mesp1 by differentiating into PDGFRα+ precursors that undergo cardiac differentiation. Furthermore, in the absence of serum-derived factors, Mesp1 promotes skeletal myogenic differentiation. Lineage tracing revealed that the majority of yolk sac and many adult hematopoietic cells derive from Mesp1+ precursors. Thus, Mesp1 is a context-dependent determination factor, integrating the stage of differentiation and the signaling environment to specify different lineage outcomes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Coração/embriologia , Sistema Hematopoético/embriologia , Mesoderma/embriologia , Músculo Esquelético/embriologia , Células-Tronco/citologia , Envelhecimento/metabolismo , Animais , Pareamento de Bases/genética , Células da Medula Óssea/citologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos/genética , Hematopoese , Sistema Hematopoético/citologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular , Músculo Esquelético/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Tempo , Fatores de Transcrição/metabolismo , Saco Vitelino/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa