Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(2): 237-251.e7, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36599352

RESUMO

N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of ∼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.


Assuntos
Splicing de RNA , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Éxons/genética
2.
Nat Rev Mol Cell Biol ; 17(1): 41-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26670016

RESUMO

The exon junction complex (EJC) is deposited onto mRNAs following splicing and adopts a unique structure, which can both stably bind to mRNAs and function as an anchor for diverse processing factors. Recent findings revealed that in addition to its established roles in nonsense-mediated mRNA decay, the EJC is involved in mRNA splicing, transport and translation. While structural studies have shed light on EJC assembly, transcriptome-wide analyses revealed differential EJC loading at spliced junctions. Thus, the EJC functions as a node of post-transcriptional gene expression networks, the importance of which is being revealed by the discovery of increasing numbers of EJC-related disorders.


Assuntos
Éxons/genética , Redes Reguladoras de Genes , Modelos Genéticos , Transcrição Gênica , Animais , Doença/genética , Humanos , Estabilidade de RNA/genética
3.
BMC Biol ; 21(1): 246, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936138

RESUMO

BACKGROUND: The exon junction complex (EJC) is involved in most steps of the mRNA life cycle, ranging from splicing to nonsense-mediated mRNA decay (NMD). It is assembled by the splicing machinery onto mRNA in a sequence-independent manner. A fundamental open question is whether the EJC is deposited onto all exon‒exon junctions or only on a subset of them. Several previous studies have made observations supportive of the latter, yet these have been limited by methodological constraints. RESULTS: In this study, we sought to overcome these limitations via the integration of two different approaches for transcriptome-wide mapping of EJCs. Our results revealed that nearly all, if not all, internal exons consistently harbor an EJC in Drosophila, demonstrating that EJC presence is an inherent consequence of the splicing reaction. Furthermore, our study underscores the limitations of eCLIP methods in fully elucidating the landscape of RBP binding sites. Our findings highlight how highly specific (low false positive) methodologies can lead to erroneous interpretations due to partial sensitivity (high false negatives). CONCLUSIONS: This study contributes to our understanding of EJC deposition and its association with pre-mRNA splicing. The universal presence of EJC on internal exons underscores its significance in ensuring proper mRNA processing. Additionally, our observations highlight the need to consider both specificity and sensitivity in RBP mapping methodologies.


Assuntos
Proteínas de Ligação a RNA , Ribonucleoproteínas , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Drosophila/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Éxons , Sítios de Ligação
4.
Cell ; 133(2): 213-6, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423193

RESUMO

In mammalian cells, the splicing machinery deposits the exon junction complex (EJC) on mRNA splice junctions. Two studies in this issue now link the EJC to different aspects of translational control. Ma et al. (2008) show that the EJC activates translation downstream of the mTOR signaling pathway, whereas Isken et al. (2008) establish that translation is repressed by partners of the EJC that are implicated in nonsense mediated decay (NMD).


Assuntos
Éxons , Biossíntese de Proteínas , Ribonucleoproteínas/metabolismo , Animais , Códon sem Sentido , Humanos , Splicing de RNA , Estabilidade de RNA
5.
Nucleic Acids Res ; 49(19): 11022-11037, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634811

RESUMO

Nonsense-mediated mRNA decay (NMD) is a highly regulated quality control mechanism through which mRNAs harboring a premature termination codon are degraded. It is also a regulatory pathway for some genes. This mechanism is subject to various levels of regulation, including phosphorylation. To date only one kinase, SMG1, has been described to participate in NMD, by targeting the central NMD factor UPF1. Here, screening of a kinase inhibitor library revealed as putative NMD inhibitors several molecules targeting the protein kinase AKT1. We present evidence demonstrating that AKT1, a central player in the PI3K/AKT/mTOR signaling pathway, plays an essential role in NMD, being recruited by the UPF3X protein to phosphorylate UPF1. As AKT1 is often overactivated in cancer cells and as this should result in increased NMD efficiency, the possibility that this increase might affect cancer processes and be targeted in cancer therapy is discussed.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-akt/genética , RNA Helicases/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proliferação de Células , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Biblioteca Gênica , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo
6.
EMBO J ; 37(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30275269

RESUMO

Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to characterize the composition and dynamics of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Upf1-23 (Upf1, Upf2, Upf3) and Upf1-decappingUpf1-decapping contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association with RNA was partially dependent on Upf1-23 components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through conserved, successive Upf1-23 and Upf1-decapping complexes. This model can be extended to accommodate steps that are missing in yeast, to serve for further mechanistic studies of NMD in eukaryotes.


Assuntos
Modelos Biológicos , Complexos Multiproteicos/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Multiproteicos/genética , RNA Helicases/genética , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 48(18): 10413-10427, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960271

RESUMO

The nuclear Cap-Binding Complex (CBC), consisting of Nuclear Cap-Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5'cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein-protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting mRNA expression.


Assuntos
RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Éxons , Regulação da Expressão Gênica/genética , Humanos , Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas de Ligação ao Cap de RNA/genética , RNA Polimerase II/genética , Estabilidade de RNA/genética , Transporte de RNA/genética , Fatores de Transcrição/genética
8.
Nucleic Acids Res ; 48(10): 5670-5683, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329775

RESUMO

Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3Å-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies.


Assuntos
Ciclofilinas/química , Fator de Iniciação 4A em Eucariotos/química , Proteínas de Ligação a RNA/química , Spliceossomos/química , Linhagem Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Inflamação/genética , Modelos Moleculares , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Spliceossomos/metabolismo
9.
Am J Hum Genet ; 100(4): 592-604, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28285769

RESUMO

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Assuntos
Anormalidades Múltiplas/genética , Ciclofilinas/genética , Mutação , Peptidilprolil Isomerase/genética , Degeneração Retiniana/genética , Adolescente , Animais , Criança , Pré-Escolar , Ciclofilinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Linhagem , Peptidilprolil Isomerase/metabolismo , Adulto Jovem
10.
Nucleic Acids Res ; 46(21): 11553-11565, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30252095

RESUMO

CLIP-seq methods provide transcriptome-wide snapshots of RNA-protein interactions in live cells. Reverse transcriptases stopping at cross-linked nucleotides sign for RNA-protein binding sites. Reading through cross-linked positions results in false binding site assignments. In the 'monitored enhanced CLIP' (meCLIP) method, a barcoded biotinylated linker is ligated at the 5' end of cross-linked RNA fragments to purify RNA prior to the reverse transcription. cDNAs keeping the barcode sequence correspond to reverse transcription read-throughs. Read through occurs in unpredictable proportions, representing up to one fourth of total reads. Filtering out those reads strongly improves reliability and precision in protein binding site assignment.


Assuntos
Reagentes de Ligações Cruzadas/química , Imunoprecipitação/métodos , Proteínas/metabolismo , RNA/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Complementar , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/genética , Proteínas/química , Proteínas/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Transcrição Reversa , Transativadores/genética , Transativadores/metabolismo
11.
Nucleic Acids Res ; 46(5): 2648-2659, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29378013

RESUMO

The RNA helicase UPF1 is a key component of the nonsense mediated mRNA decay (NMD) pathway. Previous X-ray crystal structures of UPF1 elucidated the molecular mechanisms of its catalytic activity and regulation. In this study, we examine features of the UPF1 core and identify a structural element that adopts different conformations in the various nucleotide- and RNA-bound states of UPF1. We demonstrate, using biochemical and single molecule assays, that this structural element modulates UPF1 catalytic activity and thereby refer to it as the regulatory loop. Interestingly, there are two alternatively spliced isoforms of UPF1 in mammals which differ only in the lengths of their regulatory loops. The loop in isoform 1 (UPF11) is 11 residues longer than that of isoform 2. We find that this small insertion in UPF11 leads to a two-fold increase in its translocation and ATPase activities. To determine the mechanistic basis of this differential catalytic activity, we have determined the X-ray crystal structure of the helicase core of UPF11 in its apo-state. Our results point toward a novel mechanism of regulation of RNA helicases, wherein alternative splicing leads to subtle structural rearrangements within the protein that are critical to modulate enzyme movements and catalytic activity.


Assuntos
RNA Helicases/química , Transativadores/química , Biocatálise , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , RNA/metabolismo , RNA Helicases/metabolismo , Transativadores/metabolismo
12.
BMC Genomics ; 20(1): 250, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922228

RESUMO

BACKGROUND: The last 10 years have seen the rise of countless functional genomics studies based on Next-Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While some tools have been proposed for investigating data quality after the mapping step, there is no commonly adopted framework that would be easy to use and broadly applicable to any NGS data type. RESULTS: We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS experiment data for any organism with available genomic annotations. In a single command line, ALFA can compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding, miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans. CONCLUSIONS: We show that ALFA provides a powerful and broadly applicable approach for post mapping quality control and to produce a global overview using common or dedicated annotations. It is made available to the community as an easy to install command line tool and from the Galaxy Tool Shed.


Assuntos
Arabidopsis/genética , Caenorhabditis elegans/genética , Biologia Computacional/métodos , Saccharomyces cerevisiae/genética , Animais , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Anotação de Sequência Molecular , Análise de Sequência de RNA , Software
13.
Mol Cell ; 41(6): 693-703, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21419344

RESUMO

Upf1 is a crucial factor in nonsense-mediated mRNA decay, the eukaryotic surveillance pathway that degrades mRNAs containing premature stop codons. The essential RNA-dependent ATPase activity of Upf1 is triggered by the formation of the surveillance complex with Upf2-Upf3. We report crystal structures of Upf1 in the presence and absence of the CH domain, captured in the transition state with ADP:AlF4⁻ and RNA. In isolation, Upf1 clamps onto the RNA, enclosing it in a channel formed by both the catalytic and regulatory domains. Upon binding to Upf2, the regulatory CH domain of Upf1 undergoes a large conformational change, causing the catalytic helicase domain to bind RNA less extensively and triggering its helicase activity. Formation of the surveillance complex thus modifies the RNA binding properties and the catalytic activity of Upf1, causing it to switch from an RNA-clamping mode to an RNA-unwinding mode.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/metabolismo , Estrutura Terciária de Proteína , Transativadores/química , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos/metabolismo , RNA/genética , RNA/metabolismo , RNA Helicases , Estabilidade de RNA/genética , Proteínas de Ligação a RNA , Recombinases Rec A/química , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 110(48): E4611-8, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218557

RESUMO

DEAD-box proteins are involved in all aspects of RNA processing. They bind RNA in an ATP-dependent manner and couple ATP hydrolysis to structural and compositional rearrangements of ribonucleoprotein particles. Conformational control is a major point of regulation for DEAD-box proteins to act on appropriate substrates and in a timely manner in vivo. Binding partners containing a middle domain of translation initiation factor 4G (MIF4G) are emerging as important regulators. Well-known examples are eIF4G and Gle1, which bind and activate the DEAD-box proteins eIF4A and Dbp5. Here, we report the mechanism of an inhibiting MIF4G domain. We determined the 2.0-Å resolution structure of the complex of human eIF4AIII and the MIF4G domain of the splicing factor Complexed With Cef1 (CWC22), an essential prerequisite for exon junction complex assembly by the splicing machinery. The CWC22 MIF4G domain binds both RecA domains of eIF4AIII. The mode of RecA2 recognition is similar to that observed in the activating complexes, yet is specific for eIF4AIII. The way the CWC22 MIF4G domain latches on the eIF4AIII RecA1 domain is markedly different from activating complexes. In the CWC22-eIF4AIII complex, the RNA-binding and ATP-binding motifs of the two RecA domains do not face each other, as would be required in the active state, but are in diametrically opposite positions. The binding mode of CWC22 to eIF4AIII reveals a facet of how MIF4G domains use their versatile structural frameworks to activate or inhibit DEAD-box proteins.


Assuntos
Proteínas de Transporte/química , RNA Helicases DEAD-box/química , Fator de Iniciação 4A em Eucariotos/química , Modelos Moleculares , Complexos Multiproteicos/química , Domínios e Motivos de Interação entre Proteínas , Cromatografia em Gel , Cristalização , Escherichia coli , Humanos , Proteínas Nucleares , Peptidilprolil Isomerase , Proteínas de Ligação a RNA
15.
Proc Natl Acad Sci U S A ; 110(15): 5903-8, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530232

RESUMO

The multiprotein exon junction complex (EJC), deposited by the splicing machinery, is an important constituent of messenger ribonucleoprotein particles because it participates to numerous steps of the mRNA lifecycle from splicing to surveillance via nonsense-mediated mRNA decay pathway. By an unknown mechanism, the EJC also stimulates translation efficiency of newly synthesized mRNAs. Here, we show that among the four EJC core components, the RNA-binding protein metastatic lymph node 51 (MLN51) is a translation enhancer. Overexpression of MLN51 preferentially increased the translation of intron-containing reporters via the EJC, whereas silencing MLN51 decreased translation. In addition, modulation of the MLN51 level in cell-free translational extracts confirmed its direct role in protein synthesis. Immunoprecipitations indicated that MLN51 associates with translation-initiating factors and ribosomal subunits, and in vitro binding assays revealed that MLN51, alone or as part of the EJC, interacts directly with the pivotal eukaryotic translation initiation factor eIF3. Taken together, our data define MLN51 as a translation activator linking the EJC and the translation machinery.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Transporte Biológico , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Íntrons , Estrutura Terciária de Proteína , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo
16.
Nucleic Acids Res ; 41(4): 2404-15, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275559

RESUMO

The RNA helicase Upf1 is a multifaceted eukaryotic enzyme involved in DNA replication, telomere metabolism and several mRNA degradation pathways. Upf1 plays a central role in nonsense-mediated mRNA decay (NMD), a surveillance process in which it links premature translation termination to mRNA degradation with its conserved partners Upf2 and Upf3. In human, both the ATP-dependent RNA helicase activity and the phosphorylation of Upf1 are essential for NMD. Upf1 activation occurs when Upf2 binds its N-terminal domain, switching the enzyme to the active form. Here, we uncovered that the C-terminal domain of Upf1, conserved in higher eukaryotes and containing several essential phosphorylation sites, also inhibits the flanking helicase domain. With different biochemical approaches we show that this domain, named SQ, directly interacts with the helicase domain to impede ATP hydrolysis and RNA unwinding. The phosphorylation sites in the distal half of the SQ domain are not directly involved in this inhibition. Therefore, in the absence of multiple binding partners, Upf1 is securely maintained in an inactive state by two intramolecular inhibition mechanisms. This study underlines the tight and intricate regulation pathways required to activate multifunctional RNA helicases like Upf1.


Assuntos
RNA Helicases/química , RNA Helicases/metabolismo , Transativadores/química , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Fosforilação , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Helicases/genética , Proteínas Recombinantes/biossíntese , Transativadores/genética
17.
Methods ; 63(1): 32-40, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545196

RESUMO

An emergent strategy for the transcriptome-wide study of protein-RNA interactions is CLIP-seq (crosslinking and immunoprecipitation followed by high-throughput sequencing). We combined CLIP-seq and mRNA-seq to identify direct RNA binding sites of eIF4AIII in human cells. This RNA helicase is a core constituant of the Exon Junction Complex (EJC), a multifunctional protein complex associated with spliced mRNAs in metazoans. Here, we describe the successive steps of the CLIP protocol and the computational tools and strategies we employed to map the physiological targets of eIF4AIII on human RNAs.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Sítios de Ligação , Humanos , Transcriptoma/genética
18.
Nat Commun ; 15(1): 4209, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760352

RESUMO

Exon junction complexes are deposited at exon-exon junctions during splicing. They are primarily known to activate non-sense mediated degradation of transcripts harbouring premature stop codons before the last intron. According to a popular model, exon-junction complexes accompany mRNAs to the cytoplasm where the first translating ribosome pushes them out. However, they are also removed by uncharacterized, translation-independent mechanisms. Little is known about kinetic and transcript specificity of these processes. Here we tag core subunits of exon-junction complexes with complementary split nanoluciferase fragments to obtain sensitive and quantitative assays for complex formation. Unexpectedly, exon-junction complexes form large stable mRNPs containing stalled ribosomes. Complex assembly and disassembly rates are determined after an arrest in transcription and/or translation. 85% of newly deposited exon-junction complexes are disassembled by a translation-dependent mechanism. However as this process is much faster than the translation-independent one, only 30% of the exon-junction complexes present in cells at steady state require translation for disassembly. Deep RNA sequencing shows a bias of exon-junction complex bound transcripts towards microtubule and centrosome coding ones and demonstrate that the lifetimes of exon-junction complexes are transcript-specific. This study provides a dynamic vision of exon-junction complexes and uncovers their unexpected stable association with ribosomes.


Assuntos
Éxons , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Éxons/genética , Ribossomos/metabolismo , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Splicing de RNA , Células HeLa , Células HEK293
19.
J Virol ; 86(14): 7530-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553336

RESUMO

In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células HEK293 , Humanos , Células Jurkat , RNA Helicases , Proteínas dos Retroviridae , Linfócitos T/metabolismo , Linfócitos T/virologia , Proteínas Virais/biossíntese , Proteínas Virais/genética
20.
Proc Natl Acad Sci U S A ; 107(22): 10050-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479275

RESUMO

In mammals, Up-frameshift proteins (UPFs) form a surveillance complex that interacts with the exon junction complex (EJC) to elicit nonsense-mediated mRNA decay (NMD). UPF3b is the component of the surveillance complex that bridges the interaction with the EJC. Here, we report the 3.4 A resolution crystal structure of a minimal UPF3b-EJC assembly, consisting of the interacting domains of five proteins (UPF3b, MAGO, Y14, eIF4AIII, and Barentsz) together with RNA and adenylyl-imidodiphosphate. Human UPF3b binds with the C-terminal domain stretched over a composite surface formed by eIF4AIII, MAGO, and Y14. Residues that affect NMD when mutated are found at the core interacting surfaces, whereas differences between UPF3b and UPF3a map at peripheral interacting residues. Comparison with the binding mode of the protein PYM underscores how a common molecular surface of MAGO and Y14 recognizes different proteins acting at different times in the same pathway. The binding mode to eIF4AIII identifies a surface hot spot that is used by different DEAD-box proteins to recruit their regulators.


Assuntos
Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Células HeLa , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa