Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222573

RESUMO

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Assuntos
Mudança Climática , Ecossistema , Humanos , Produtos Agrícolas , Carbono , Secas
2.
Proc Natl Acad Sci U S A ; 120(46): e2313591120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948586

RESUMO

The deleterious effects of ozone (O3) pollution on crop physiology, yield, and productivity are widely acknowledged. It has also been assumed that C4 crops with a carbon concentrating mechanism and greater water use efficiency are less sensitive to O3 pollution than C3 crops. This assumption has not been widely tested. Therefore, we compiled 46 journal articles and unpublished datasets that reported leaf photosynthetic and biochemical traits, plant biomass, and yield in five C3 crops (chickpea, rice, snap bean, soybean, and wheat) and four C4 crops (sorghum, maize, Miscanthus × giganteus, and switchgrass) grown under ambient and elevated O3 concentration ([O3]) in the field at free-air O3 concentration enrichment (O3-FACE) facilities over the past 20 y. When normalized by O3 exposure, C3 and C4 crops showed a similar response of leaf photosynthesis, but the reduction in chlorophyll content, fluorescence, and yield was greater in C3 crops compared with C4 crops. Additionally, inbred and hybrid lines of rice and maize showed different sensitivities to O3 exposure. This study quantitatively demonstrates that C4 crops respond less to elevated [O3] than C3 crops. This understanding could help maintain cropland productivity in an increasingly polluted atmosphere.


Assuntos
Oryza , Ozônio , Fotossíntese/fisiologia , Clorofila , Folhas de Planta/fisiologia , Poaceae , Zea mays/fisiologia , Produtos Agrícolas/genética , Oryza/genética , Dióxido de Carbono/farmacologia
4.
Plant Cell Environ ; 47(9): 3344-3364, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38321805

RESUMO

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.


Assuntos
Fotossíntese , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Plantas/metabolismo
5.
J Exp Bot ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363775

RESUMO

Artificial intelligence and machine learning (AI/ML) can be used to automatically analyze large image datasets. One valuable application of this approach is estimation of plant trait data contained within images. Here we review 39 papers that describe the development and/or application of such models for estimation of stomatal traits from epidermal micrographs. In doing so, we hope to provide plant biologists with a foundational understanding of AI/ML and summarize the current capabilities and limitations of published tools. While most models show human-level performance for stomatal density (SD) quantification at superhuman speed, they are often likely to be limited in how broadly they can be applied across phenotypic diversity associated with genetic, environmental or developmental variation. Other models can make predictions across greater phenotypic diversity and/or additional stomatal/epidermal traits, but require significantly greater time investment to generate ground-truth data. We discuss the challenges and opportunities presented by AI/ML-enabled computer vision analysis, and make recommendations for future work to advance accelerated stomatal phenotyping.

6.
J Exp Bot ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021256

RESUMO

Stomata regulate CO2 and water vapor exchange between leaves and the atmosphere. Stomata are a target for engineering to improve crop intrinsic water use efficiency (iWUE). One example is by expressing genes that lower stomatal density (SD) and reduce stomatal conductance (gsw). However, the quantitative relationship between reduced SD, gsw, and the mechanisms underlying it is poorly understood. We addressed this knowledge gap using low-SD sugarcane (Saccharum spp. hybrid) as a case study alongside a meta-analysis of data from 10 species. Transgenic expression of EPIDERMAL PATTERNING FACTOR 2 from Sorghum bicolor (SbEFP2) in sugarcane reduced SD by 26-38% but did not affect gsw compared to wildtype. Further, no changes occurred in stomatal complex size or proxies for photosynthetic capacity. Measurements of gas exchange at low CO2 concentrations that promote complete stomatal opening to normalize aperture size between genotypes were combined with modeling of maximum gsw from anatomical data. These data suggest that increased stomatal aperture is the only possible explanation for maintaining gsw when SD is reduced. Meta-analysis across C3 dicots, C3 monocots, and C4 monocots revealed engineered reductions in SD are strongly correlated with lower gsw (r2=0.60-0.98), but this response is damped relative to the change in anatomy.

7.
J Exp Bot ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021331

RESUMO

Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the photosynthesis (AN) relationship with intracellular CO2 concentration (ci) so that photosynthesis is CO2-saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum, led to reduced stomatal densities, reduced gs, reduced plant water use and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.

8.
Plant Physiol ; 187(3): 1462-1480, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618057

RESUMO

Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.


Assuntos
Botânica/métodos , Mapeamento Cromossômico/instrumentação , Aprendizado de Máquina , Fenótipo , Estômatos de Plantas/fisiologia , Locos de Características Quantitativas , Zea mays/genética , Botânica/instrumentação , Genes de Plantas
9.
Plant Physiol ; 187(4): 2544-2562, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618072

RESUMO

Stomata allow CO2 uptake by leaves for photosynthetic assimilation at the cost of water vapor loss to the atmosphere. The opening and closing of stomata in response to fluctuations in light intensity regulate CO2 and water fluxes and are essential for maintaining water-use efficiency (WUE). However, a little is known about the genetic basis for natural variation in stomatal movement, especially in C4 crops. This is partly because the stomatal response to a change in light intensity is difficult to measure at the scale required for association studies. Here, we used high-throughput thermal imaging to bypass the phenotyping bottleneck and assess 10 traits describing stomatal conductance (gs) before, during and after a stepwise decrease in light intensity for a diversity panel of 659 sorghum (Sorghum bicolor) accessions. Results from thermal imaging significantly correlated with photosynthetic gas exchange measurements. gs traits varied substantially across the population and were moderately heritable (h2 up to 0.72). An integrated genome-wide and transcriptome-wide association study identified candidate genes putatively driving variation in stomatal conductance traits. Of the 239 unique candidate genes identified with the greatest confidence, 77 were putative orthologs of Arabidopsis (Arabidopsis thaliana) genes related to functions implicated in WUE, including stomatal opening/closing (24 genes), stomatal/epidermal cell development (35 genes), leaf/vasculature development (12 genes), or chlorophyll metabolism/photosynthesis (8 genes). These findings demonstrate an approach to finding genotype-to-phenotype relationships for a challenging trait as well as candidate genes for further investigation of the genetic basis of WUE in a model C4 grass for bioenergy, food, and forage production.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Genoma de Planta , Estudo de Associação Genômica Ampla/instrumentação , Fenótipo , Estômatos de Plantas/fisiologia , Sorghum/genética
10.
Plant Physiol ; 187(3): 1481-1500, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618065

RESUMO

Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.


Assuntos
Perfilação da Expressão Gênica , Técnicas Genéticas/instrumentação , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Sorghum/genética , Água/metabolismo , Características de História de Vida , Fenótipo , Sorghum/metabolismo
11.
Plant Cell Environ ; 45(8): 2324-2336, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590441

RESUMO

Stomata regulate leaf CO2 assimilation (A) and water loss. The Ball-Berry and Medlyn models predict stomatal conductance (gs ) with a slope parameter (m or g1 ) that reflects the sensitivity of gs to A, atmospheric CO2  and humidity, and is inversely related to water use efficiency (WUE). This study addressed knowledge gaps about what the values of m and g1 are in C4 crops under field conditions, as well as how they vary among genotypes and with drought stress. Four inbred maize genotypes were unexpectedly consistent in how m and g1 decreased as water supply decreased. This was despite genotypic variation in stomatal patterning, A and gs . m and g1 were strongly correlated with soil water content, moderately correlated with predawn leaf water potential (Ψpd ), but not correlated with midday leaf water potential (Ψmd ). This implied that m and g1 respond to long-term water supply more than short-term drought stress. The conserved nature of m and g1 across anatomically diverse genotypes and water supplies suggests there is flexibility in structure-function relationships underpinning WUE. This evidence can guide the simulation of maize gs across a range of water supply in the primary maize growing region and inform efforts to improve WUE.


Assuntos
Fotossíntese , Zea mays , Dióxido de Carbono , Secas , Fotossíntese/fisiologia , Folhas de Planta/genética , Estômatos de Plantas/fisiologia , Abastecimento de Água , Zea mays/genética
12.
Plant Cell Environ ; 45(12): 3462-3475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098093

RESUMO

The leaf economics spectrum (LES) describes multivariate correlations in leaf structural, physiological and chemical traits, originally based on diverse C3 species grown under natural ecosystems. However, the specific contribution of C4 species to the global LES is studied less widely. C4 species have a CO2 concentrating mechanism which drives high rates of photosynthesis and improves resource use efficiency, thus potentially pushing them towards the edge of the LES. Here, we measured foliage morphology, structure, photosynthesis, and nutrient content for hundreds of genotypes of the C4 grass Miscanthus× giganteus grown in two common gardens over two seasons. We show substantial trait variations across M.× giganteus genotypes and robust genotypic trait relationships. Compared to the global LES, M.× giganteus genotypes had higher photosynthetic rates, lower stomatal conductance, and less nitrogen content, indicating greater water and photosynthetic nitrogen use efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker leaves with greater leaf mass per area and lower leaf density than triploid genotypes. By expanding the LES relationships across C3 species to include C4 crops, these findings highlight that M.× giganteus occupies the boundary of the global LES and suggest the potential for ploidy to alter LES traits.


Assuntos
Ecossistema , Poaceae , Poaceae/genética , Tetraploidia , Triploidia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Nitrogênio
13.
Glob Chang Biol ; 28(11): 3537-3556, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35090072

RESUMO

Stomata play a central role in surface-atmosphere exchange by controlling the flux of water and CO2 between the leaf and the atmosphere. Representation of stomatal conductance (gsw ) is therefore an essential component of models that seek to simulate water and CO2 exchange in plants and ecosystems. For given environmental conditions at the leaf surface (CO2 concentration and vapor pressure deficit or relative humidity), models typically assume a linear relationship between gsw and photosynthetic CO2 assimilation (A). However, measurement of leaf-level gsw response curves to changes in A are rare, particularly in the tropics, resulting in only limited data to evaluate this key assumption. Here, we measured the response of gsw and A to irradiance in six tropical species at different leaf phenological stages. We showed that the relationship between gsw and A was not linear, challenging the key assumption upon which optimality theory is based-that the marginal cost of water gain is constant. Our data showed that increasing A resulted in a small increase in gsw at low irradiance, but a much larger increase at high irradiance. We reformulated the popular Unified Stomatal Optimization (USO) model to account for this phenomenon and to enable consistent estimation of the key conductance parameters g0 and g1 . Our modification of the USO model improved the goodness-of-fit and reduced bias, enabling robust estimation of conductance parameters at any irradiance. In addition, our modification revealed previously undetectable relationships between the stomatal slope parameter g1 and other leaf traits. We also observed nonlinear behavior between A and gsw in independent data sets that included data collected from attached and detached leaves, and from plants grown at elevated CO2 concentration. We propose that this empirical modification of the USO model can improve the measurement of gsw parameters and the estimation of plant and ecosystem-scale water and CO2  fluxes.


Assuntos
Estômatos de Plantas , Transpiração Vegetal , Dióxido de Carbono , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/fisiologia
14.
Glob Chang Biol ; 28(4): 1659-1677, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767298

RESUMO

Enhancing soil carbon (C) storage has the potential to offset human-caused increases in atmospheric CO2 . Rising CO2 has occurred concurrently with increasing supply rates of biologically limiting nutrients such as nitrogen (N) and phosphorus (P). However, it is unclear how increased supplies of N and P will alter soil C sequestration, particularly in grasslands, which make up nearly a third of non-agricultural land worldwide. Here, we leverage a globally distributed nutrient addition experiment (the Nutrient Network) to examine how a decade of N and P fertilization (alone and in combination) influenced soil C and N stocks at nine grassland sites spanning the continental United States. We measured changes in bulk soil C and N stocks and in three soil C fractions (light and heavy particulate organic matter, and mineral-associated organic matter fractions). Nutrient amendment had variable effects on soil C and N pools that ranged from strongly positive to strongly negative, while soil C and N pool sizes varied by more than an order of magnitude across sites. Piecewise SEM clarified that small increases in plant C inputs with fertilization did not translate to greater soil C storage. Nevertheless, peak season aboveground plant biomass (but not root biomass or production) was strongly positively related to soil C storage at seven of the nine sites, and across all nine sites, soil C covaried with moisture index and soil mineralogy, regardless of fertilization. Overall, we show that site factors such as moisture index, plant productivity, soil texture, and mineralogy were key predictors of cross-site soil C, while nutrient amendment had weaker and site-specific effects on C sequestration. This suggests that prioritizing the protection of highly productive temperate grasslands is critical for reducing future greenhouse gas losses arising from land use change.


Assuntos
Carbono , Solo , Ecossistema , Fertilização , Pradaria , Humanos , Nitrogênio/análise
15.
J Exp Bot ; 72(13): 4965-4980, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33914063

RESUMO

Previous studies have found that maximum quantum yield of CO2 assimilation (Φ CO2,max,app) declines in lower canopies of maize and miscanthus, a maladaptive response to self-shading. These observations were limited to single genotypes, leaving it unclear whether the maladaptive shade response is a general property of this C4 grass tribe, the Andropogoneae. We explored the generality of this maladaptation by testing the hypothesis that erect leaf forms (erectophiles), which allow more light into the lower canopy, suffer less of a decline in photosynthetic efficiency than drooping leaf (planophile) forms. On average, Φ CO2,max,app declined 27% in lower canopy leaves across 35 accessions, but the decline was over twice as great in planophiles than in erectophiles. The loss of photosynthetic efficiency involved a decoupling between electron transport and assimilation. This was not associated with increased bundle sheath leakage, based on 13C measurements. In both planophiles and erectophiles, shaded leaves had greater leaf absorptivity and lower activities of key C4 enzymes than sun leaves. The erectophile form is considered more productive because it allows a more effective distribution of light through the canopy to support photosynthesis. We show that in sorghum, it provides a second benefit, maintenance of higher Φ CO2,max,app to support efficient use of that light resource.


Assuntos
Sorghum , Transporte de Elétrons , Fotossíntese , Folhas de Planta , Zea mays
16.
J Exp Bot ; 72(13): 5024-5037, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33893796

RESUMO

Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RILs) derived from a Setaria italica×Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning, and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple quantitative trait loci (QTL) were identified for stomatal density and canopy temperature, including co-located QTL on chromosomes 5 and 9. The direction of the additive effect of these QTL on chromosome 5 and 9 was in accordance with the positive phenotypic relationship between these two traits. This, along with prior experiments, suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.


Assuntos
Locos de Características Quantitativas , Setaria (Planta) , Secas , Fenótipo , Setaria (Planta)/genética , Temperatura , Água
17.
Nature ; 510(7503): 139-42, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24805231

RESUMO

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.


Assuntos
Dióxido de Carbono/farmacologia , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Estado Nutricional , Valor Nutritivo/efeitos dos fármacos , Saúde Pública/tendências , Ar/análise , Atmosfera/química , Austrália , Cruzamento , Dióxido de Carbono/análise , Produtos Agrícolas/metabolismo , Dieta , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fabaceae/química , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Saúde Global/tendências , Humanos , Ferro/análise , Ferro/metabolismo , Deficiências de Ferro , Japão , Fotossíntese/efeitos dos fármacos , Ácido Fítico/análise , Ácido Fítico/metabolismo , Estados Unidos , Zinco/análise , Zinco/deficiência , Zinco/metabolismo
18.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670649

RESUMO

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Assuntos
Biodiversidade , Eutrofização/efeitos da radiação , Herbivoria/fisiologia , Luz , Plantas/metabolismo , Plantas/efeitos da radiação , Poaceae , Clima , Eutrofização/efeitos dos fármacos , Geografia , Atividades Humanas , Internacionalidade , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/efeitos da radiação , Fatores de Tempo
19.
PLoS Genet ; 13(6): e1006841, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28644860

RESUMO

Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.


Assuntos
Ambiente Controlado , Locos de Características Quantitativas/genética , Setaria (Planta)/genética , Alelos , Biomassa , Mapeamento Cromossômico , Genoma de Planta , Genótipo , Herança Multifatorial/genética , Fenótipo , Setaria (Planta)/crescimento & desenvolvimento
20.
Glob Chang Biol ; 25(12): 4327-4338, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31571358

RESUMO

Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.


Assuntos
Ozônio , Fotossíntese , Poluição Ambiental , Variação Genética , Folhas de Planta , Zea mays
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa