Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113065, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682705

RESUMO

Copper is a critical element for eukaryotic life involved in numerous cellular functions, including redox balance, but is toxic in excess. Therefore, tight regulation of copper acquisition and homeostasis is essential for cell physiology and survival. Here, we identify a different regulatory mechanism for cellular copper homeostasis that requires the presence of an endogenous retroviral envelope glycoprotein called Refrex1. We show that cells respond to elevated extracellular copper by increasing the expression of Refrex1, which regulates copper acquisition through interaction with the main copper transporter CTR1. Downmodulation of Refrex1 results in intracellular copper accumulation leading to reactive oxygen species (ROS) production and subsequent apoptosis, which is prevented by copper chelator treatment. Our results show that Refrex1 has been co-opted for its ability to regulate copper entry through CTR1 in order to limit copper excess, redox imbalance, and ensuing cell death, strongly suggesting that other endogenous retroviruses may have similar metabolic functions among vertebrates.


Assuntos
Proteínas de Transporte de Cátions , Retrovirus Endógenos , Animais , Cobre/farmacologia , Cobre/metabolismo , Transportador de Cobre 1/metabolismo , Sobrevivência Celular , Retrovirus Endógenos/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa