Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(7): 1425-1429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848249

RESUMO

During March and April 2024, we studied dairy cattle specimens from a single farm in Texas, USA, using multiple molecular, cell culture, and next-generation sequencing pathogen detection techniques. Here, we report evidence that highly pathogenic avian influenza A(H5N1) virus strains of clade 2.3.4.4b were the sole cause of this epizootic.


Assuntos
Doenças dos Bovinos , Virus da Influenza A Subtipo H5N1 , Animais , Texas/epidemiologia , Bovinos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Filogenia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Indústria de Laticínios , Feminino
2.
Virus Genes ; 60(1): 100-104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182930

RESUMO

Bluetongue disease is a reportable animal disease that affects wild and farmed ruminants, including white-tailed deer (WTD). This report documents the clinical findings, ancillary diagnostics, and genomic characterization of a novel reassortant bluetongue virus serotype 2 (BTV-2) strain isolated from a dead Florida farmed WTD in 2022. Our analyses support that this BTV-2 strain likely stemmed from the acquisition of genome segments from co-circulating BTV strains in Florida and Louisiana. In addition, our analyses also indicate that genetically uncharacterized BTV strains may be circulating in the Southeastern USA; however, the identity and reassortant status of these BTV strains cannot be determined based on the VP2 and VP5 genome sequences. Hence, continued surveillance based on complete genome characterization is needed to understand the genetic diversity of BTV strains in this region and the potential threat they may pose to the health of deer and other ruminants.


Assuntos
Vírus Bluetongue , Cervos , Animais , Florida , Vírus Bluetongue/genética , Sorogrupo
3.
J Aerosol Sci ; 1752024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38680161

RESUMO

The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells. We report the use of a testing system that combines a BioAerosol Nebulizing Generator (BANG) to aerosolize Human coronavirus (HCoV)-OC43 (OC43) and an integrated air sampling system comprised of a BioCascade impactor (BC) and Viable Virus Aerosol Sampler (VIVAS), together referred to as BC-VIVAS, to deliver the aerosolized virus directly onto Vero E6 cells. Particles were collected into four stages according to their aerodynamic diameter (Stage 1: >9.43 µm, Stage 2: 3.81-9.43 µm, Stage 3: 1.41-3.81 µm and Stage 4: <1.41 µm). OC43 was detected by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses of samples from all BC-VIVAS stages. The calculated OC43 genome equivalent counts per cm3 of air ranged from 0.34±0.09 to 70.28±12.56, with the highest concentrations in stage 3 (1.41-3.81 µm) and stage 4 (<1.41 µm). Virus-induced cytopathic effects appeared only in cells exposed to particles collected in stages 3 and 4, demonstrating the presence of viable OC43 in particles <3.81 µm. This study demonstrates the dual utility of the BC-VIVAS as particle size-fractionating air sampler and a direct exposure system for aerosolized viruses. Such utility may help minimize conventional post-collection sample processing time required to assess the viability of airborne viruses and increase the understanding about transmission pathways for airborne pathogens.

4.
Microbiol Resour Announc ; 13(4): e0017224, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38526094

RESUMO

Rhinovirus-A was previously shown to cause false-positive results in a Japanese SARS-CoV-2 antigen test. We report that a false-positive result was obtained in a specimen with rhinovirus C-32 that had been tested using an American SARS-CoV-2 antigen test.

5.
Front Bioeng Biotechnol ; 12: 1325336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486867

RESUMO

We report the inactivation of SARS CoV-2 and its surrogate-Human coronavirus OC43 (HCoV-OC43), on representative porous (KN95 mask material) and nonporous materials (aluminum and polycarbonate) using a Compact Portable Plasma Reactor (CPPR). The CPPR is a compact (48 cm3), lightweight, portable and scalable device that forms Dielectric Barrier Discharge which generates ozone using surrounding atmosphere as input gas, eliminating the need of source gas tanks. Iterative CPPR exposure time experiments were performed on inoculated material samples in 3 operating volumes. Minimum CPPR exposure times of 5-15 min resulted in 4-5 log reduction of SARS CoV-2 and its surrogate on representative material samples. Ozone concentration and CPPR energy requirements for virus inactivation are documented. Difference in disinfection requirements in porous and non-porous material samples is discussed along with initial scaling studies using the CPPR in 3 operating volumes. The results of this feasibility study, along with existing literature on ozone and CPPR decontamination, show the potential of the CPPR as a powerful technology to reduce fomite transmission of enveloped respiratory virus-induced infectious diseases such as COVID-19. The CPPR can overcome limitations of high temperatures, long exposure times, bulky equipment, and toxic residuals related to conventional decontamination technologies.

6.
Aerosol Sci Technol ; 58(3): 217-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764553

RESUMO

As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.

7.
Aerosol Sci Technol ; 58(3): 264-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706712

RESUMO

The ability to collect size-fractionated airborne particles that contain viable bacteria and fungi directly into liquid medium while also maintaining their viability is critical for assessing exposure risks. In this study, we present the BioCascade impactor, a novel device designed to collect airborne particles into liquid based on their aerodynamic diameter in three sequential stages (>9.74 µm, 3.94-9.74 µm, and 1.38-3.94 µm when operated at 8.5 L/min). Aerosol samples containing microorganisms - either Saccharomyces kudriavzevii or Micrococcus luteus, were used to evaluate the performance of the BioCascade (BC) paired with either the VIable Virus Aerosol Sampler (VIVAS) or a gelatin filter (GF) as stage 4 to collect particles <1.38 µm. Stages 2 and 3 collected the largest fractions of viable S. kudriavzevii when paired with VIVAS (0.468) and GF (0.519), respectively. Stage 3 collected the largest fraction of viable M. luteus particles in both BC+VIVAS (0.791) and BC+GF (0.950) configurations. The distribution function of viable microorganisms was consistent with the size distributions measured by the Aerodynamic Particle Sizer. Testing with both bioaerosol species confirmed no internal loss and no re-aerosolization occurred within the BC. Irrespective of the bioaerosol tested, stages 1, 3 and 4 maintained ≥80% of viability, while stage 2 maintained only 37% and 73% of viable S. kudriavzevii and M. luteus, respectively. The low viability that occurred in stage 2 warrants further investigation. Our work shows that the BC can efficiently size-classify and collect bioaerosols without re-aerosolization and effectively maintain the viability of collected microorganisms.

8.
Aerosol Sci Technol ; 57(11): 1142-1153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143528

RESUMO

Airborne transmission of infectious (viable) SARS-CoV-2 is increasingly accepted as the primary manner by which the virus is spread from person to person. Risk of exposure to airborne virus is higher in enclosed and poorly ventilated spaces. We present a study focused on air sampling within residences occupied by individuals with COVID-19. Air samplers (BioSpot-VIVAS, VIVAS, and BC-251) were positioned in primary- and secondary-occupancy regions in seven homes. Swab samples were collected from high-touch surfaces. Isolation of SARS-CoV-2 was attempted for samples with virus detectable by RT-qPCR. Viable virus was quantified by plaque assay, and complete virus genome sequences were obtained for selected samples from each sampling day. SARS-CoV-2 was detected in 24 of 125 samples (19.2%) by RT-qPCR and isolated from 14 (11.2%) in cell cultures. It was detected in 80.9% (17/21) and cultured from 61.9% (13/21) of air samples collected using water condensation samplers, compared to swab samples which had a RT-qPCR detection rate of 10.5% (4/38) and virus isolation rate of 2.63% (1/38). No statistically significant differences existed in the likelihood of virus detection by RT-qPCR or amount of infectious virus in the air between areas of primary and secondary occupancy within residences. Our work provides information about the presence of SARS-CoV-2 in the air within homes of individuals with COVID-19. Information herein can help individuals make informed decisions about personal exposure risks when sharing indoor spaces with infected individuals isolating at home and further inform health departments and the public about SARS-CoV-2 exposure risks within residences.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa