Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 25(4): 863-875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35103374

RESUMO

Harvesting can magnify the destabilising effects of environmental perturbations on population dynamics and, thereby, increase extinction risk. However, population-dynamic theory predicts that impacts of harvesting depend on the type and strength of density-dependent regulation. Here, we used logistic population growth models and an empirical reindeer case study to show that low to moderate harvesting can actually buffer populations against environmental perturbations. This occurs because of density-dependent environmental stochasticity, where negative environmental impacts on vital rates are amplified at high population density due to intra-specific resource competition. Simulations from our population models show that even low levels of harvesting may prevent overabundance, thereby dampening population fluctuations and reducing the risk of population collapse and quasi-extinction following environmental perturbations. Thus, depending on the species' life history and the strength of density-dependent environmental drivers, low to moderate harvesting can improve population resistance to increased climate variability and extreme weather expected under global warming.


Assuntos
Dinâmica Populacional , Modelos Logísticos , Densidade Demográfica
2.
Glob Chang Biol ; 23(4): 1374-1389, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27426229

RESUMO

The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.


Assuntos
Herbivoria , Rena , Animais , Regiões Árticas , Índice de Massa Corporal , Feminino , Dinâmica Populacional , Estações do Ano , Svalbard
3.
J Anim Ecol ; 86(1): 75-87, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27625075

RESUMO

Adult individuals that do not breed in a given year occur in a wide range of natural populations. However, such nonbreeders are often ignored in theoretical and empirical population studies, limiting our knowledge of how nonbreeders affect realized and estimated population dynamics and potentially impeding projection of deterministic and stochastic population growth rates. We present and analyse a general modelling framework for systems where breeders and nonbreeders differ in key demographic rates, incorporating different forms of nonbreeding, different life histories and frequency-dependent effects of nonbreeders on demographic rates of breeders. Comparisons of estimates of deterministic population growth rate, λ, and demographic variance, σd2, from models with and without distinct nonbreeder classes show that models that do not explicitly incorporate nonbreeders give upwardly biased estimates of σd2, particularly when the equilibrium ratio of nonbreeders to breeders, Nnb∗/Nb∗, is high. Estimates of λ from empirical observations of breeders only are substantially inflated when individuals frequently re-enter the breeding population after periods of nonbreeding. Sensitivity analyses of diverse parameterizations of our model framework, with and without negative frequency-dependent effects of nonbreeders on breeder demographic rates, show how changes in demographic rates of breeders vs. nonbreeders differentially affect λ. In particular, λ is most sensitive to nonbreeder parameters in long-lived species, when Nnb∗/Nb∗>0, and when individuals are unlikely to breed at several consecutive time steps. Our results demonstrate that failing to account for nonbreeders in population studies can obscure low population growth rates that should cause management concern. Quantifying the size and demography of the nonbreeding section of populations and modelling appropriate demographic structuring is therefore essential to evaluate nonbreeders' influence on deterministic and stochastic population dynamics.


Assuntos
Características de História de Vida , Modelos Biológicos , Reprodução , Animais , Dinâmica Populacional , Crescimento Demográfico
4.
Proc Biol Sci ; 283(1843)2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27881747

RESUMO

Inbreeding increases parent-offspring relatedness and commonly reduces offspring viability, shaping selection on reproductive interactions involving relatives and associated parental investment (PI). Nevertheless, theories predicting selection for inbreeding versus inbreeding avoidance and selection for optimal PI have only been considered separately, precluding prediction of optimal PI and associated reproductive strategy given inbreeding. We unify inbreeding and PI theory, demonstrating that optimal PI increases when a female's inbreeding decreases the viability of her offspring. Inbreeding females should therefore produce fewer offspring due to the fundamental trade-off between offspring number and PI. Accordingly, selection for inbreeding versus inbreeding avoidance changes when females can adjust PI with the degree that they inbreed. By contrast, optimal PI does not depend on whether a focal female is herself inbred. However, inbreeding causes optimal PI to increase given strict monogamy and associated biparental investment compared with female-only investment. Our model implies that understanding evolutionary dynamics of inbreeding strategy, inbreeding depression, and PI requires joint consideration of the expression of each in relation to the other. Overall, we demonstrate that existing PI and inbreeding theories represent special cases of a more general theory, implying that intrinsic links between inbreeding and PI affect evolution of behaviour and intrafamilial conflict.


Assuntos
Aptidão Genética , Endogamia , Preferência de Acasalamento Animal , Reprodução , Animais , Feminino , Masculino , Modelos Genéticos
5.
Ecology ; 97(1): 40-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008773

RESUMO

Life-history theory predicts that the vital rates that influence population growth the most should be buffered against environmental fluctuations due to selection for reduced variation. However, it remains unclear whether populations actually are influenced by such "demographic buffering," because variation in vital rates can be compared on different measurement scales, and there has been little attempt to investigate whether the choice of scale influences the chance of detecting demographic buffering. We compared two statistical approaches to examine whether demographic buffering has influenced vital rates in wild Svalbard reindeer (Rangifer tarandus platyrhynchus). To account for statistical variance constraints on vital rates limited between 0 and 1 in analyses of demographic buffering, one approach is to scale observed variation by the maximum possible variation on the arithmetic scale. When applying this approach, the results suggested that demographic buffering was occurring. However, when we applied an alternative approach that identified statistical variance constraints on the logit scale, there was no evidence for demographic buffering. Thus, the choice of measurement scale must be carefully considered before one can fully understand whether demographic buffering influences life histories. Defining the appropriate scale may require an understanding of the mechanisms through which demographic buffering may have evolved.


Assuntos
Modelos Biológicos , Rena/fisiologia , Envelhecimento , Animais , Feminino , Fertilidade , Masculino , Dinâmica Populacional , Projetos de Pesquisa
6.
Mol Ecol ; 21(6): 1487-99, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22335620

RESUMO

Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.


Assuntos
Endogamia , Dinâmica Populacional , Pardais/fisiologia , Animais , Feminino , Masculino , Noruega , Linhagem , Comportamento Sexual Animal , Pardais/genética
7.
Nat Commun ; 10(1): 1616, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962419

RESUMO

Extreme climate events often cause population crashes but are difficult to account for in population-dynamic studies. Especially in long-lived animals, density dependence and demography may induce lagged impacts of perturbations on population growth. In Arctic ungulates, extreme rain-on-snow and ice-locked pastures have led to severe population crashes, indicating that increasingly frequent rain-on-snow events could destabilize populations. Here, using empirically parameterized, stochastic population models for High-Arctic wild reindeer, we show that more frequent rain-on-snow events actually reduce extinction risk and stabilize population dynamics due to interactions with age structure and density dependence. Extreme rain-on-snow events mainly suppress vital rates of vulnerable ages at high population densities, resulting in a crash and a new population state with resilient ages and reduced population sensitivity to subsequent icy winters. Thus, observed responses to single extreme events are poor predictors of population dynamics and persistence because internal density-dependent feedbacks act as a buffer against more frequent events.


Assuntos
Clima Frio/efeitos adversos , Modelos Estatísticos , Rena , Animais , Regiões Árticas , Feminino , Dinâmica Populacional/estatística & dados numéricos , Chuva , Estações do Ano , Neve , Processos Estocásticos , Svalbard
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa