Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gut ; 69(12): 2165-2179, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32217638

RESUMO

OBJECTIVE: Sporadic early-onset colorectal cancer (EOCRC) has bad prognosis, yet is poorly represented by cell line models. We examine the key mutational and transcriptomic alterations in an organoid biobank enriched in EOCRCs. DESIGN: We established paired cancer (n=32) and normal organoids (n=18) from 20 patients enriched in microsatellite-stable EOCRC. Exome and transcriptome analysis was performed. RESULTS: We observed a striking diversity of molecular phenotypes, including PTPRK-RSPO3 fusions. Transcriptionally, RSPO fusion organoids resembled normal colon organoids and were distinct from APC mutant organoids, with high BMP2 and low PTK7 expression. Single cell transcriptome analysis confirmed the similarity between RSPO fusion organoids and normal organoids, with a propensity for maturation on Wnt withdrawal, whereas the APC mutant organoids were locked in progenitor stages. CRISPR/Cas9 engineered mutation of APC in normal human colon organoids led to upregulation of PTK7 protein and suppression of BMP2, but less so with an engineered RNF43 mutation. The frequent co-occurrence of RSPO fusions with SMAD4 or BMPR1A mutation was confirmed in TCGA database searches. RNF43 mutation was found in organoid from a leukaemia survivor with a novel mutational signature; and organoids with POLE proofreading mutation displayed ultramutation. The cancer organoid genomes were stable over long culture periods, while normal human colon organoids tended to be subject to clonal dominance over time. CONCLUSIONS: These organoid models enriched in EOCRCs with linked genomic data fill a gap in existing CRC models and reveal distinct genetic profiles and novel pathway cooperativity.


Assuntos
Neoplasias Colorretais/genética , Perfil Genético , Organoides/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Proteína Morfogenética Óssea 2/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Sistemas CRISPR-Cas , Moléculas de Adesão Celular/genética , Perfilação da Expressão Gênica , Fusão Gênica , Humanos , Modelos Genéticos , Mutação , Receptores Proteína Tirosina Quinases/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteína Smad4/genética , Trombospondinas/genética , Bancos de Tecidos , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Sequenciamento do Exoma
2.
Gut ; 66(9): 1645-1656, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27329244

RESUMO

OBJECTIVE: Serrated polyps (hyperplastic polyps, sessile or traditional serrated adenomas), which can arise in a sporadic or polyposis setting, predispose to colorectal cancer (CRC), especially those with microsatellite instability (MSI) due to MLH1 promoter methylation (MLH1me+). We investigate genetic alterations in the serrated polyposis pathway. DESIGN: We used a combination of exome sequencing and target gene Sanger sequencing to study serrated polyposis families, sporadic serrated polyps and CRCs, with validation by analysis of The Cancer Genome Atlas (TCGA) cohort, followed by organoid-based functional studies. RESULTS: In one out of four serrated polyposis families, we identified a germline RNF43 mutation that displayed autosomal dominant cosegregation with the serrated polyposis phenotype, along with second-hit inactivation through loss of heterozygosity or somatic mutations in all serrated polyps (16), adenomas (5) and cancer (1) examined, as well as coincidental BRAF mutation in 62.5% of the serrated polyps. Concurrently, somatic RNF43 mutations were identified in 34% of sporadic sessile/traditional serrated adenomas, but 0% of hyperplastic polyps (p=0.013). Lastly, in MSI CRCs, we found significantly more frequent RNF43 mutations in the MLH1me+ (85%) versus MLH1me- (33.3%) group (p<0.001). These findings were validated in the TCGA MSI CRCs (p=0.005), which further delineated a significant differential involvement of three Wnt pathway genes between these two groups (RNF43 in MLH1me+; APC and CTNNB1 in MLH1me-); and identified significant co-occurrence of BRAF and RNF43 mutations in the MSI (p<0.001), microsatellite stable (MSS) (p=0.002) and MLH1me+ MSI CRCs (p=0.042). Functionally, organoid culture of serrated adenoma or mouse colon with CRISPR-induced RNF43 mutations had reduced dependency on R-spondin1. CONCLUSIONS: These results illustrate the importance of RNF43, along with BRAF mutation in the serrated neoplasia pathway (both the sporadic and familial forms), inform genetic diagnosis protocol and raise therapeutic opportunities through Wnt inhibition in different stages of evolution of serrated polyps.


Assuntos
Adenoma/genética , Pólipos do Colo/genética , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Adenoma/patologia , Adulto , Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Família , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Hong Kong , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mutação , Ubiquitina-Proteína Ligases , Via de Sinalização Wnt/fisiologia
3.
Nat Commun ; 13(1): 2710, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581206

RESUMO

Lynch Syndrome (LS) is an autosomal dominant disease conferring a high risk of colorectal cancer due to germline heterozygous mutations in a DNA mismatch repair (MMR) gene. Although cancers in LS patients show elevated somatic mutation burdens, information on mutation rates in normal tissues and understanding of the trajectory from normal to cancer cell is limited. Here we whole genome sequence 152 crypts from normal and neoplastic epithelial tissues from 10 LS patients. In normal tissues the repertoire of mutational processes and mutation rates is similar to that found in wild type individuals. A morphologically normal colonic crypt with an increased mutation burden and MMR deficiency-associated mutational signatures is identified, which may represent a very early stage of LS pathogenesis. Phylogenetic trees of tumour crypts indicate that the most recent ancestor cell of each tumour is already MMR deficient and has experienced multiple cycles of clonal evolution. This study demonstrates the genomic stability of epithelial cells with heterozygous germline MMR gene mutations and highlights important differences in the pathogenesis of LS from other colorectal cancer predisposition syndromes.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Células Epiteliais/patologia , Mutação em Linhagem Germinativa , Humanos , Mutação , Filogenia
4.
Nat Commun ; 13(1): 3949, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803914

RESUMO

Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , DNA Glicosilases/genética , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Glicosilases/metabolismo , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Mutação , Taxa de Mutação
5.
Nat Genet ; 53(10): 1434-1442, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594041

RESUMO

Mutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life.


Assuntos
DNA Polimerase III/genética , DNA Polimerase II/genética , Mutação em Linhagem Germinativa/genética , Adolescente , Adulto , Idoso , Desenvolvimento Embrionário/genética , Genoma Humano/genética , Humanos , Neoplasias Intestinais/patologia , Intestinos/patologia , Pessoa de Meia-Idade , Mutagênese/genética , Filogenia , Células-Tronco/patologia , Adulto Jovem
6.
Cell Stem Cell ; 23(6): 882-897.e11, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30344100

RESUMO

Gastric cancer displays marked molecular heterogeneity with aggressive behavior and treatment resistance. Therefore, good in vitro models that encompass unique subtypes are urgently needed for precision medicine development. Here, we have established a primary gastric cancer organoid (GCO) biobank that comprises normal, dysplastic, cancer, and lymph node metastases (n = 63) from 34 patients, including detailed whole-exome and transcriptome analysis. The cohort encompasses most known molecular subtypes (including EBV, MSI, intestinal/CIN, and diffuse/GS, with CLDN18-ARHGAP6 or CTNND1-ARHGAP26 fusions or RHOA mutations), capturing regional heterogeneity and subclonal architecture, while their morphology, transcriptome, and genomic profiles remain closely similar to in vivo tumors, even after long-term culture. Large-scale drug screening revealed sensitivity to unexpected drugs that were recently approved or in clinical trials, including Napabucasin, Abemaciclib, and the ATR inhibitor VE-822. Overall, this new GCO biobank, with linked genomic data, provides a useful resource for studying both cancer cell biology and precision cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Bancos de Espécimes Biológicos , Ensaios de Seleção de Medicamentos Antitumorais , Organoides/efeitos dos fármacos , Organoides/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Benzofuranos/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Isoxazóis/farmacologia , Masculino , Naftoquinonas/farmacologia , Medicina de Precisão , Pirazinas/farmacologia , Neoplasias Gástricas/classificação , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa