Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(20): 3840-3855.e8, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270248

RESUMO

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


Assuntos
Poliadenilação , Isoformas de RNA , Isoformas de RNA/genética , Regiões 5' não Traduzidas , Regiões 3' não Traduzidas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Exonucleases/genética
2.
Nat Immunol ; 17(11): 1252-1262, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27595231

RESUMO

The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Viroses/imunologia , Viroses/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Imunidade Inata , Camundongos , Camundongos Knockout , Peptídeos/farmacologia , Fosforilação , Ligação Proteica , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Ubiquitinação , Viroses/virologia , Replicação Viral
3.
J Biol Chem ; 299(5): 104652, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990220

RESUMO

N-formyl methionine (fMet)-containing proteins are produced in bacteria, eukaryotic organelles mitochondria and plastids, and even in cytosol. However, Nα-terminally formylated proteins have been poorly characterized because of the lack of appropriate tools to detect fMet independently of downstream proximal sequences. Using a fMet-Gly-Ser-Gly-Cys peptide as an antigen, we generated a pan-fMet-specific rabbit polyclonal antibody called anti-fMet. The raised anti-fMet recognized universally and sequence context-independently Nt-formylated proteins in bacterial, yeast, and human cells as determined by a peptide spot array, dot blotting, and immunoblotting. We anticipate that the anti-fMet antibody will be broadly used to enable an understanding of the poorly explored functions and mechanisms of Nt-formylated proteins in various organisms.


Assuntos
Anticorpos , Especificidade de Anticorpos , N-Formilmetionina , Proteínas , Animais , Humanos , Coelhos , Anticorpos/análise , Anticorpos/imunologia , Bactérias/química , Citosol/metabolismo , Soros Imunes/análise , Soros Imunes/imunologia , Immunoblotting , Mitocôndrias/metabolismo , N-Formilmetionina/análise , N-Formilmetionina/imunologia , Proteínas/análise , Proteínas/química , Proteínas/imunologia , Proteínas/metabolismo , Saccharomyces cerevisiae/química
4.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239986

RESUMO

Let-7 miRNAs have pleiotropic cellular functions in cell proliferation, migration, and regenerative processes. Here, we investigate whether the inhibition of let-7 miRNAs with antisense oligonucleotides (ASOs) can be a transient and safe strategy enhancing the therapeutic potential of mesenchymal stromal cells (MSCs) to overcome their limitations in cell therapeutic trials. We first identified major subfamilies of let-7 miRNAs preferentially expressed in MSCs, and efficient ASO combinations against these selected subfamilies that mimic the effects of LIN28 activation. When let-7 miRNAs were inhibited with an ASO combination (anti-let7-ASOs), MSCs exhibited higher proliferation with delayed senescence during the passaging into a culture. They also exhibited increased migration and enhanced osteogenic differentiation potential. However, these changes in MSCs were not accompanied by cell-fate changes into pericytes or the additional acquisition of stemness, but instead occurred as functional changes accompanied by changes in proteomics. Interestingly, MSCs with let-7 inhibition exhibited metabolic reprogramming characterized by an enhanced glycolytic pathway, decreased reactive oxygen species, and lower transmembrane potential in mitochondria. Moreover, let-7-inhibited MSCs promoted the self-renewal of neighboring hematopoietic progenitor cells, and enhanced capillary formation in endothelial cells. These findings together show that our optimized ASO combination efficiently reprograms the MSC functional state, allowing for more efficient MSC cell therapy.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/genética , MicroRNAs/metabolismo
5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614321

RESUMO

Mesenchymal stromal cells derived from induced pluripotent stem cells (iMSCs) have been proposed as alternative sources of primary MSCs with various advantages for cell therapeutic trials. However, precise evaluation of the differences between iMSCs and primary MSCs is lacking due to individual variations in the donor cells, which obscure direct comparisons between the two. In this study, we generated donor-matched iMSCs from individual bone marrow-derived MSCs and directly compared their cell-autonomous and paracrine therapeutic effects. We found that the transition from primary MSCs to iMSCs is accompanied by a functional shift towards higher proliferative activity, with variations in differentiation potential in a donor cell-dependent manner. The transition from MSCs to iMSCs was associated with common changes in transcriptomic and proteomic profiles beyond the variations of their individual donors, revealing expression patterns unique for the iMSCs. These iMSC-specific patterns were characterized by a shift in cell fate towards a pericyte-like state and enhanced secretion of paracrine cytokine/growth factors. Accordingly, iMSCs exhibited higher support for the self-renewing expansion of primitive hematopoietic progenitors and more potent immune suppression of allogenic immune responses than MSCs. Our study suggests that iMSCs represent a separate entity of MSCs with unique therapeutic potential distinct from their parental MSCs, but points to the need for iMSC characterization in the individual basis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Proteômica , Diferenciação Celular/fisiologia , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo
6.
Anal Chem ; 94(10): 4192-4200, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35239305

RESUMO

Phosphorylation is a crucial component of cellular signaling cascades. It controls a variety of biological cellular functions, including cell growth and apoptosis. Owing to the low stoichiometry of phosphorylated proteins, the enrichment of phosphopeptides prior to LC-MS/MS is necessary for comprehensive phosphoproteome analysis, and quantitative phosphoproteomic workflows are typically limited by the amount of sample required. To address this issue, we developed an easy-to-establish, widely applicable, and reproducible strategy to increase phosphoproteomic signals from a small amount of sample without a phosphoenrichment step. By exploiting the multiplexing nature of isobaric labeling to generate a merged signal from multiple samples, and using a larger amount of enriched phosphopeptides as a carrier, we were able to increase trace amounts of phosphopeptides in the unpurified sample to an identifiable level and perform quantification using the reporter ion intensity of the isobaric tag. Our results showed that >1400 phosphopeptides were quantified from 250 ng of tryptic peptides prepared from cells. In a proof-of-concept of our strategy, we distinguished three types of lung cancer cell lines based on their quantitative phosphoproteomic data and identified changes in the phosphoproteome induced by drug treatment.


Assuntos
Fosfopeptídeos , Proteômica , Cromatografia Líquida , Fosfopeptídeos/análise , Fosforilação , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
7.
Cell Mol Life Sci ; 78(7): 3725-3741, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687501

RESUMO

Protein arginylation is a critical regulator of a variety of biological processes. The ability to uncover the global arginylation pattern and its associated signaling pathways would enable us to identify novel disease targets. Here, we report the development of a tool able to capture the N-terminal arginylome. This tool, termed R-catcher, is based on the ZZ domain of p62, which was previously shown to bind N-terminally arginylated proteins. Mutating the ZZ domain enhanced its binding specificity and affinity for Nt-Arg. R-catcher pulldown coupled to LC-MS/MS led to the identification of 59 known and putative arginylated proteins. Among these were a subgroup of novel ATE1-dependent arginylated ER proteins that are linked to diverse biological pathways, including cellular senescence and vesicle-mediated transport as well as diseases, such as Amyotrophic Lateral Sclerosis and Alzheimer's disease. This study presents the first molecular tool that allows the unbiased identification of arginylated proteins, thereby unlocking the arginylome and provide a new path to disease biomarker discovery.


Assuntos
Aminoaciltransferases/metabolismo , Arginina/metabolismo , Retículo Endoplasmático/metabolismo , Vetores Genéticos/genética , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Aminoaciltransferases/química , Aminoaciltransferases/genética , Arginina/química , Arginina/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 116(36): 18031-18040, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427506

RESUMO

Upon invading target cells, multifunctional autoprocessing repeats-in-toxin (MARTX) toxins secreted by bacterial pathogens release their disease-related modularly structured effector domains. However, it is unclear how a diverse repertoire of effector domains within these toxins are processed and activated. Here, we report that Makes caterpillars floppy-like effector (MCF)-containing MARTX toxins require ubiquitous ADP-ribosylation factor (ARF) proteins for processing and activation of intermediate effector modules, which localize in different subcellular compartments following limited processing of holo effector modules by the internal cysteine protease. Effector domains structured tandemly with MCF in intermediate modules become disengaged and fully activated by MCF, which aggressively interacts with ARF proteins present at the same location as intermediate modules and is converted allosterically into a catalytically competent protease. MCF-mediated effector processing leads ultimately to severe virulence in mice via an MCF-mediated ARF switching mechanism across subcellular compartments. This work provides insight into how bacteria take advantage of host systems to induce systemic pathogenicity.


Assuntos
Fatores de Ribosilação do ADP , ADP-Ribosilação , Toxinas Bacterianas , Vibrio vulnificus , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/metabolismo , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Domínios Proteicos , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidade
9.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742968

RESUMO

Co-culture system, in which two or more distinct cell types are cultured together, is advantageous in that it can mimic the environment of the in vivo niche of the cells. In this study, we presented a strategy to analyze the secretome of a specific cell type under the co-culture condition in serum-supplemented media. For the cell-specific secretome analysis, we expressed the mouse mutant methionyl-tRNA synthetase for the incorporation of the non-canonical amino acid, azidonorleucine into the newly synthesized proteins in cells of which the secretome is targeted. The azidonorleucine-tagged secretome could be enriched, based on click chemistry, and distinguished from any other contaminating proteins, either from the cell culture media or the other cells co-cultured with the cells of interest. In order to have more reliable true-positive identifications of cell-specific secretory bodies, we established criteria to exclude any identified human peptide matched to bovine proteins. As a result, we identified a maximum of 719 secreted proteins in the secretome analysis under this co-culture condition. Last, we applied this platform to profile the secretome of mesenchymal stem cells and predicted its therapeutic potential on osteoarthritis based on secretome analysis.


Assuntos
Metionina tRNA Ligase , Animais , Bovinos , Química Click , Técnicas de Cocultura , Metionina tRNA Ligase/genética , Camundongos , Proteínas , Secretoma
10.
Anal Chem ; 93(42): 14088-14098, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34615347

RESUMO

The mass spectrometry-based analysis of protein post-translational modifications requires large amounts of sample, complicating the analysis of samples with limited amounts of proteins such as clinical biopsies. Here, we present a tip-based N-terminal analysis method, tipNrich. The entire procedure is processed in a single pipette tip to minimize sample loss, which is so highly optimized to analyze small amounts of proteins, even femtomole-scale of a single protein. With tipNrich, we investigated various single proteins purified from different organisms using a low-resolution mass spectrometer and identified several N-terminal peptides with different Nt-modifications such as ragged N-termini. Furthermore, we applied matrix-assisted laser desorption ionization time-of-flight mass spectrometry to our method for shortening the analysis time. Moreover, we showed that our method could be utilized in disease diagnosis as exemplified by the characterization of wild-type transthyretin amyloidosis patients compared to the healthy individuals based on N-terminome profiling. In summary, tipNrich will satisfy the need of identifying N-terminal peptides even with highly scarce amounts of proteins and of having faster processing time to check the quality of protein products or to characterize N-terminal proteoform-related diseases.


Assuntos
Peptídeos , Proteoma , Humanos , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
11.
Mol Cell ; 51(3): 374-85, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23871434

RESUMO

WIP1 (wild-type p53-induced phosphatase 1) functions as a homeostatic regulator of the ataxia telangiectasia mutated (ATM)-mediated signaling pathway in response to ionizing radiation (IR). Here we identify homeodomain-interacting protein kinase 2 (HIPK2) as a protein kinase that targets WIP1 for phosphorylation and proteasomal degradation. In unstressed cells, WIP1 is constitutively phosphorylated by HIPK2 and maintained at a low level by proteasomal degradation. In response to IR, ATM-dependent AMPKα2-mediated HIPK2 phosphorylation promotes inhibition of WIP1 phosphorylation through dissociation of WIP1 from HIPK2, followed by stabilization of WIP1 for termination of the ATM-mediated double-strand break (DSB) signaling cascade. Notably, HIPK2 depletion impairs IR-induced γ-H2AX foci formation, cell-cycle checkpoint activation, and DNA repair signaling, and the survival rate of hipk2+/- mice upon γ-irradiation is markedly reduced compared to wild-type mice. Taken together, HIPK2 plays a critical role in the initiation of DSB repair signaling by controlling WIP1 levels in response to IR.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína Fosfatase 2C , Radiação Ionizante , Transdução de Sinais , Ubiquitinação
12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467726

RESUMO

Mesenchymal stem cells (MSCs) have the potential to be a viable therapy against various diseases due to their paracrine effects, such as secretion of immunomodulatory, trophic and protective factors. These cells are known to be distributed within various organs and tissues. Although they possess the same characteristics, MSCs from different sources are believed to have different secretion potentials and patterns, which may influence their therapeutic effects in disease environments. We characterized the protein secretome of adipose (AD), bone marrow (BM), placenta (PL), and Wharton's jelly (WJ)-derived human MSCs by using conditioned media and analyzing the secretome by mass spectrometry and follow-up bioinformatics. Each MSC secretome profile had distinct characteristics depending on the source. However, the functional analyses of the secretome from different sources showed that they share similar characteristics, such as cell migration and negative regulation of programmed cell death, even though differences in the composition of the secretome exist. This study shows that the secretome of fetal-derived MSCs, such as PL and WJ, had a more diverse composition than that of AD and BM-derived MSCs, and it was assumed that their therapeutic potential was greater because of these properties.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Medula Óssea , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Cromatografia Líquida , Análise por Conglomerados , Técnicas de Cocultura , Biologia Computacional , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Feminino , Humanos , Espectrometria de Massas , Osteogênese , Gravidez , Proteômica , Espectrometria de Massas em Tandem
13.
J Proteome Res ; 19(1): 212-220, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31714086

RESUMO

Recent sequencing technologies have highlighted translation of untranslated regions (UTRs) in genomes, although it remains unknown whether the translated products persist in a cell. Here, we propose a proteogenomic approach to UTR identification at the proteome level, which has been challenging due to the lack of corresponding sequences required for peptide spectrum matching. We address the challenge with constructing translated UTR (tUTR) database, consisting of all hypothetical sequences that can be translated from UTR by assuming non-AUG initiation at near-cognate start codons and stop codon readthrough. In the analysis of the H1299 cell line mass spectrometry (MS/MS) dataset, the tUTR DB-based proteogenomic approach enabled the detection of 52 5'-UTR and 9 3'-UTR peptides from 45 and 9 genes, respectively. The identified UTR peptides were validated via high spectral similarity with their synthetic peptides. The 5'-UTR peptides pointed out alternative initiation sites with non-AUG start codons, which exactly conformed to Kozak contexts of annotated initiation sites. It is also worth noting that our approach can detect translated amino acid sequences as well as provide evidence for UTR translation, while ribosome profiling provides only the translation evidence. For previously reported stop codon readthrough in MDH1 gene, we could confirm the amino acid inserted during the readthrough. Data are available via ProteomeXchange with identifier PXD016207.


Assuntos
Proteogenômica , Códon de Iniciação , Peptídeos/genética , Espectrometria de Massas em Tandem , Regiões não Traduzidas
14.
Anal Chem ; 92(9): 6462-6469, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267142

RESUMO

The field of terminal proteomics is limited in that it is optimized for large-scale analysis via multistep processes involving liquid chromatography. Here, we present an integrated N-terminal peptide enrichment method (iNrich) that can handle as little as 25 µg of cell lysate via a single-stage encapsulated solid-phase extraction column. iNrich enables simple, rapid, and reproducible sample processing, treatment of a wide range of protein amounts (25 µg ∼ 1 mg), multiplexed parallel sample preparation, and in-stage sample prefractionation using a mixed-anion-exchange filter. We identified ∼5000 N-terminal peptides (Nt-peptides) from only 100 µg of human cell lysate including Nt-formyl peptides. Multiplexed sample preparation facilitated quantitative and robust enrichment of N-terminome with dozens of samples simultaneously. We further developed the method to incorporate isobaric tags such as a tandem mass tag (TMT) and used it to discover novel peptides during ER stress analysis. The iNrich facilitated high-throughput N-terminomics and degradomics at a low cost using commercially available reagents and apparatus, without requiring arduous procedures.


Assuntos
Peptídeos/química , Proteoma/análise , Células Cultivadas , Cromatografia Líquida , Humanos , Concentração de Íons de Hidrogênio , Extração em Fase Sólida , Espectrometria de Massas em Tandem
15.
Development ; 144(22): 4159-4172, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993397

RESUMO

GTPase regulator associated with focal adhesion kinase 1 (GRAF1) is an essential component of the GPI-enriched endocytic compartment (GEEC) endocytosis pathway. Mutations in the human GRAF1 gene are associated with acute myeloid leukemia, but its normal role in myeloid cell development remains unclear. We show that Graf, the Drosophila ortholog of GRAF1, is expressed and specifically localizes to GEEC endocytic membranes in macrophage-like plasmatocytes. We also find that loss of Graf impairs GEEC endocytosis, enhances EGFR signaling and induces a plasmatocyte overproliferation phenotype that requires the EGFR signaling cascade. Mechanistically, Graf-dependent GEEC endocytosis serves as a major route for EGFR internalization at high, but not low, doses of the predominant Drosophila EGFR ligand Spitz (Spi), and is indispensable for efficient EGFR degradation and signal attenuation. Finally, Graf interacts directly with EGFR in a receptor ubiquitylation-dependent manner, suggesting a mechanism by which Graf promotes GEEC endocytosis of EGFR at high Spi. Based on our findings, we propose a model in which Graf functions to downregulate EGFR signaling by facilitating Spi-induced receptor internalization through GEEC endocytosis, thereby restraining plasmatocyte proliferation.


Assuntos
Proteínas de Transporte/metabolismo , Compartimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Endocitose , Receptores ErbB/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Hematopoese , Receptores de Peptídeos de Invertebrados/metabolismo , Animais , Proliferação de Células , Clatrina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Hemócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteínas ras/metabolismo
16.
J Proteome Res ; 18(10): 3800-3806, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31475827

RESUMO

We propose to use cRFP (common Repository of FBS Proteins) in the MS (mass spectrometry) raw data search of cell secretomes. cRFP is a small supplementary sequence list of highly abundant fetal bovine serum proteins added to the reference database in use. The aim behind using cRFP is to prevent the contaminant FBS proteins from being misidentified as other proteins in the reference database, just as we would use cRAP (common Repository of Adventitious Proteins) to prevent contaminant proteins present either by accident or through unavoidable contacts from being misidentified as other proteins. We expect it to be widely used in experiments where the proteins are obtained from serum-free media after thorough washing of the cells, or from a complex media such as SILAC, or from extracellular vesicles directly.


Assuntos
Células Cultivadas/metabolismo , Proteoma/análise , Proteômica/métodos , Soro/química , Animais , Bovinos , Meios de Cultura/química , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas
17.
Glia ; 67(2): 360-375, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444070

RESUMO

Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.


Assuntos
Axônios/patologia , Proliferação de Células/efeitos dos fármacos , Neurônios Motores/patologia , Progranulinas/metabolismo , Células de Schwann/metabolismo , Neuropatia Ciática/patologia , Animais , Axônios/efeitos dos fármacos , Bucladesina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Neurônios Motores/efeitos dos fármacos , Progranulinas/farmacologia , RNA Mensageiro/metabolismo , Células de Schwann/química , Medula Espinal/citologia
18.
Analyst ; 144(23): 7001-7009, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31647066

RESUMO

Initial sample quantity, solubilization, separation, and visualization of proteins or their proteolytically altered products are some of the challenges of the currently available solution-based N-termini enrichment methods. We therefore took advantage of the conventional SDS-PAGE system and attempted to address these challenges by proposing a simple yet reproducible, negative selection N-termini enrichment strategy coupled with mass spectrometry based protein identification. It includes in-gel protein level labeling of primary amines using d6-acetic anhydride and post-digestion negative selection of labeled N-terminal peptide(s) using N-hydroxysuccinimide activated agarose beads. We demonstrated the superiority of our method by successfully enriching protein N-termini from as low as 10 ng of bovine serum albumin. The method was validated for its applicability to a complex mixture of proteins by selectively enriching neo-N-termini generated by a site specific protease Glu-C. Its effectiveness for deep N-terminome profiling was also shown using human cell lysate. In addition, a system-wide label-free quantitative proteomic analysis of N-termini in MMP2-perturbed HCT8 cell secretome revealed substrates of several extra- and intra-cellular proteases, which are part of cell growth and proliferation and degradation pathways. In brief, the proposed method demonstrates an effective strategy not only to detect N-termini from a single protein but also for the deep and quantitative analysis of N-terminome from a limited sample amount.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Proteoma/análise , Proteômica/métodos , Anidridos Acéticos/química , Animais , Bovinos , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Deutério/química , Humanos , Marcação por Isótopo/métodos , Proteólise , Proteoma/química , Serina Endopeptidases/química , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Espectrometria de Massas em Tandem/métodos
19.
Proteomics ; 18(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136334

RESUMO

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low- and high-grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low-grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma-specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC-MS/MS. The identified proteins from the two cell types were quantified using label-free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin-based immunosorbent assay.


Assuntos
Biomarcadores Tumorais/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida/métodos , Glioblastoma/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Espectrometria de Massas em Tandem/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glicosilação , Humanos , Células Tumorais Cultivadas
20.
Anal Chem ; 90(5): 3019-3023, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406695

RESUMO

One of the most common chemistries used to label primary amines utilizes N-hydroxysuccinimide (NHS), which is also structurally incorporated in various quantitative proteomic reagents such as isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT). In this paper we report detrimental effect of hydroxylamine, a widely used quenching reagent for excess NHS, on phosphopeptides. We found an impairment in the degree of phosphopeptide identification when hydroxylamine-quenched TMT-labeled samples were vacuum-dried and desalted compared to the nondried (just diluted) and desalted ones prior to phosphoenrichment. We have also demonstrated that vacuum-drying in the presence of hydroxylamine promotes ß-elimination of phosphate groups from phosphoserine and phosphothreonine while having a minimalistic effect on phosphotyrosine. Additionally, we herein report that this negative impact of hydroxylamine could be minimized by direct desalting after appropriate dilution of quenched samples. We also found a 1.6-fold increase in the number of phosphopeptide identifications after employing our optimized method. The above method was also successfully applied to human tumor tissues to quantify over 15000 phosphopeptides from 3 mg TMT 6-plex labeled-peptides.


Assuntos
Hidroxilamina/química , Indicadores e Reagentes/química , Fosfopeptídeos/análise , Proteômica/métodos , Succinimidas/química , Humanos , Fosfopeptídeos/química , Fosfosserina/química , Fosfotreonina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa