Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402961, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895971

RESUMO

Reservoir computing (RC) system is based upon the reservoir layer, which non-linearly transforms input signals into high-dimensional states, facilitating simple training in the readout layer-a linear neural network. These layers require different types of devices-the former demonstrated as diffusive memristors and the latter prepared as drift memristors. The integration of these components can increase the structural complexity of RC system. Here, a reconfigurable resistive switching memory (RSM) capable of implementing both diffusive and drift dynamics is demonstrated. This reconfigurability is achieved by preparing a medium with a 3D ion transport channel (ITC), enabling precise control of the metal filament that determines memristor operation. The 3D ITC-RSM operates in a volatile threshold switching (TS) mode under a weak electric field and exhibits short-term dynamics that are confirmed to be applicable as reservoir elements in RC systems. Meanwhile, the 3D ITC-RSM operates in a non-volatile bipolar switching (BS) mode under a strong electric field, and the conductance modulation metrics forming the basis of synaptic weight update are validated, which can be utilized as readout elements in the readout layer. Finally, an RC system is designed for the application of reconfigurable 3D ITC-RSM, and performs real-time recognition on Morse code datasets.

2.
ACS Nano ; 17(24): 24826-24840, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060577

RESUMO

Brain-inspired neuromorphic computing systems, based on a crossbar array of two-terminal multilevel resistive random-access memory (RRAM), have attracted attention as promising technologies for processing large amounts of unstructured data. However, the low reliability and inferior conductance tunability of RRAM, caused by uncontrollable metal filament formation in the uneven switching medium, result in lower accuracy compared to the software neural network (SW-NN). In this work, we present a highly reliable CoOx-based multilevel RRAM with an optimized crystal size and density in the switching medium, providing a three-dimensional (3D) grain boundary (GB) network. This design enhances the reliability of the RRAM by improving the cycle-to-cycle endurance and device-to-device stability of the I-V characteristics with minimal variation. Furthermore, the designed 3D GB-channel RRAM (3D GB-RRAM) exhibits excellent conductance tunability, demonstrating high symmetricity (624), low nonlinearity (ßLTP/ßLTD ∼ 0.20/0.39), and a large dynamic range (Gmax/Gmin ∼ 31.1). The cyclic stability of long-term potentiation and depression also exceeds 100 cycles (105 voltage pulses), and the relative standard deviation of Gmax/Gmin is only 2.9%. Leveraging these superior reliability and performance attributes, we propose a neuromorphic sensory system for finger motion tracking and hand gesture recognition as a potential elemental technology for the metaverse. This system consists of a stretchable double-layered photoacoustic strain sensor and a crossbar array neural network. We perform training and recognition tasks on ultrasonic patterns associated with finger motion and hand gestures, attaining a recognition accuracy of 97.9% and 97.4%, comparable to that of SW-NN (99.8% and 98.7%).


Assuntos
Encéfalo , Gestos , Reprodutibilidade dos Testes , Citoesqueleto , Potenciação de Longa Duração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa