Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 24(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995774

RESUMO

In this study, environmentally friendly, self-healing waterborne polyurethanes (WPUs) were prepared based on the disulfide metathesis reaction in cystamine. The cystamine acted as a chain extender in the WPU film, which showed a high mechanical strength of 19.1 MPa. The possibility of self-healing reaction was simultaneously modeled via liquid chromatography-mass spectrometry (LC-MS). WPU was confirmed to self-heal a surface crack thermally after a scratch test, and the efficiency was measured by comparing the mechanical properties before and after a cut-and-healing test. In addition, the disulfide-thiol exchange reaction was confirmed to occur in WPU with cystamine as a chain extender and 2-mercaptoethanol. Hot press tests confirmed the possibility of reprocessing the WPU. The WPU incorporating disulfide groups showed great potential as a smart self-healing material.


Assuntos
Cistamina/química , Poliuretanos/química , Cromatografia Líquida , Dissulfetos/química , Espectrometria de Massas , Fenômenos Mecânicos , Poliuretanos/síntese química , Temperatura
2.
Molecules ; 24(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212813

RESUMO

Urethane groups formed by reacting phenolic hydroxyl groups with isocyanates are known to be reversible at high temperatures. To investigate the intrinsic self-healing of polyurethane via a reversible urethane group, we synthesized vanillyl alcohol (VA)-based polyurethanes. The phenolic hydroxyl group of vanillyl alcohol allows the introduction of a reversible urethane group into the polyurethane backbone. Particularly, we investigated the effects of varying the concentration of reversible urethane groups on the self-healing of the polyurethane, and we proposed a method that improved the mobility of the molecules contributing to the self-healing process. The concentration of reversible urethane groups in the polyurethanes was controlled by varying the vanillyl alcohol content. Increasing the concentration of the reversible urethane group worsened the self-healing property by increasing hydrogen bonding and microphase separation, which consequently decreased the molecular mobility. On the other hand, after formulating a modified chain extender (m-CE), hydrogen bonding and microphase separation decreased, and the mobility (and hence the self-healing efficiency) of the molecules improved. In VA40-10 (40% VA; 10% m-CE) heated to 140 °C, the self-healing efficiency reached 96.5% after 30 min, a 139% improvement over the control polyurethane elastomer (PU). We conclude that the self-healing and mechanical properties of polyurethanes might be tailored for applications by adjusting the vanillyl alcohol content and modifying the chain extender.


Assuntos
Álcoois Benzílicos/química , Elastômeros/química , Poliuretanos/química , Uretana/química , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
3.
Molecules ; 24(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959785

RESUMO

Isosorbide (ISB), a nontoxic bio-based bicyclic diol composed from two fuzed furans, was incorporated into the preparation of flexible polyurethane foams (FPUFs) for use as a cell opener and to impart antioxidant properties to the resulting foam. A novel method for cell opening was designed based on the anticipated reversibility of the urethane linkages formed by ISB with isocyanate. FPUFs containing various amounts of ISB (up to 5 wt%) were successfully prepared without any noticeable deterioration in the appearance and physical properties of the resulting foams. The air permeability of these resulting FPUFs was increased and this could be further improved by thermal treatment at 160 °C. The urethane units based on ISB enabled cell window opening, as anticipated, through the reversible urethane linkage. The ISB-containing FPUFs also demonstrated better antioxidant activity by impeding discoloration. Thus, ISB, a nontoxic, bio-based diol, can be a valuable raw material (or additive) for eco-friendly FPUFs without seriously compromising the physical properties of these FPUFs.


Assuntos
Antioxidantes/química , Isossorbida/química , Permeabilidade/efeitos dos fármacos , Poliuretanos/química , Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Isocianatos/química , Isocianatos/farmacologia , Isossorbida/farmacologia , Poliuretanos/farmacologia , Uretana/química
4.
Molecules ; 24(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889870

RESUMO

Polyurethane (PU) is a versatile polymer used in a wide range of applications. Recently, imparting PU with self-healing properties has attracted much interest to improve the product durability. The self-healing mechanism conceivably occurs through the existence of dynamic reversible bonds over a specific temperature range. The present study investigates the self-healing properties of 1,4:3,6-dianhydrohexitol-based PUs prepared from a prepolymer of poly(tetra-methylene ether glycol) and 4,4'-methylenebis(phenyl isocyanate) with different chain extenders (isosorbide or isomannide). PU with the conventional chain extender 1,4-butanediol was prepared for comparison. The urethane bonds in 1,4:3,6-dianhydrohexitol-based PUs were thermally reversible (as confirmed by the generation of isocyanate peaks observed by Fourier transform infrared spectroscopy) at mildly elevated temperatures and the PUs showed good mechanical properties. Especially the isosorbide-based polyurethane showed potential self-healing ability under mild heat treatment, as observed in reprocessing tests. It is inferred that isosorbide, bio-based bicyclic diol, can be employed as an efficient chain extender of polyurethane prepolymers to improve self-healing properties of polyurethane elastomers via reversible features of the urethane bonds.


Assuntos
Elastômeros/síntese química , Isossorbida/síntese química , Poliuretanos/síntese química , Temperatura , Varredura Diferencial de Calorimetria , Módulo de Elasticidade , Elastômeros/química , Isossorbida/química , Microscopia de Força Atômica , Peso Molecular , Poliuretanos/química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Difração de Raios X
5.
Langmuir ; 34(39): 11850-11856, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30169043

RESUMO

Various fluorinated methacrylic copolymers (PFPMA- X) were prepared from 2,2,3,3,3-pentafluoropropyl methacrylate (PFPMA), methyl methacrylate (MMA), and three other nonfluorinated monomers. The surface and the optical properties of these copolymers were controlled by changing the ratio of PFPMA to MMA while keeping the sum of the concentration of the two monomers fixed at 60 wt %. The parameter X represents the nominal concentration of PFPMA in various feed ratios of all five monomers. Depending on the increase in PFPMA content in PFPMA- X, the surface energy varied proportionately between 26.7 (PFPMA content: 20 wt %) and 17.4 mN/m (PFPMA content: 60 wt %), which is well-correlated with the fluorine content on the surface. Interestingly, we found that all PFPMA- X-coated glasses showed different transmittance curves in the wavelength range of 300-700 nm, and the wavelength at which maximum transmittance was recorded shifted as a function of the copolymer composition. In addition, the surface coatings of PFPMA- X with higher fluorine contents increased the transmittance of bare glass by approximately 1-2%. Quite lower and tunable refractive indices were obtained depending on the fluorine content, and all PFPMA- X showed extremely lower birefringences. Freestanding films of PFPMA- X were also well-formed, indicating that they can be used in a wide range of applications.

6.
Molecules ; 23(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274385

RESUMO

A self-healable polyhydroxyurethane (S-PU) was synthesized from sorbitol, a biomass of polyhydric alcohol, by a simple process that is suitable for practical applications. In the synthesis, only two primary hydroxyl groups of sorbitol were considered for the chain extension of the polyurethane (PU) prepolymers to introduce free hydroxyl groups in PU. As a control, conventional PU was synthesized by hexane diol mediated chain extension. Relative to the control, S-PU showed excellent intrinsic self-healing property via exchange reaction, which was facilitated by the nucleophilic addition of the secondary hydroxyl groups without any catalytic assistance and improved tensile strength due to the enhanced hydrogen bonding. We also investigated the effect of the exchange reaction on the topological, mechanical, and rheological properties of S-PU. The suggested synthetic framework for S-PU is a promising alternative to the conventional poly hydroxyurethane, in which cyclic carbonates are frequently reacted with amines. As such, it is a facile and environmentally friendly material for use in coatings, adhesives, and elastomers.


Assuntos
Elastômeros/química , Poliuretanos/química , Sorbitol/química , Ligação de Hidrogênio
7.
Molecules ; 23(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423985

RESUMO

Azomethine diols (AMDs) were synthesized by condensation between a terephthalic aldehyde, polyether diamine, and ethanol amine. The synthesized AMDs were employed to introduce azomethine groups into the backbones of polyurethane elastomers (PUEs). Different AMDs were designed to control the concentration and distribution of azomethine groups in PUEs. In this study, we explored the intrinsic self-healing of AMD-based PUEs by azomethine metathesis. Particularly, the effects of the concentration and distribution of the azomethine groups on the AMD-based PUEs were considered. Consequently, as the azomethine group concentration increased and the distribution became denser, the self-healing properties improved. With AMD3-40, the self-healing efficiency reached 86% at 130 °C after 30 min. This represents a 150% improvement over the control PUE. Additionally, as the AMD content increased, the mechanical properties improved. With AMD3-40, the tensile strength reached 50 MPa. Therefore, we concluded that the self-healing and mechanical properties of PUEs can potentially be tailored for applications by adjusting the concentration and design of AMD structure for PUEs.


Assuntos
Compostos Azo/química , Poliuretanos/química , Tiossemicarbazonas/química , Cromatografia Líquida , Elastômeros/química , Espectrometria de Massas , Fenômenos Mecânicos , Peso Molecular , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
8.
J Nanosci Nanotechnol ; 15(1): 211-4, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328332

RESUMO

Hybrid nanocomposites of polyurethane (PU) were prepared by in-situ polymerization of 4,4'- diphenyl methane diisocyanate (MDI) with mixture of graphene oxide (GO) and graphene nanoplatelet (GNP) dispersed in a poly(tetramethylene ether glycol) (PTMEG). Effects of the fillers, GO and GNP, on the thermal, mechanical, and electrical properties of the nanocomposites of PU were investigated. Sonication of the hybrid of GNP and GO with PTMEG enabled effective dispersion of the fillers in the solution than the sonication of GNP alone. The addition of PTMEG in the solution prevented the GNPs from the restacking during the drying process. It was observed that the electrical conductivity and mechanical property of the nanocomposites based on the hybrid of GO and GNP were superior to the nanocomposite based on GNP alone at the same loading of the filler. At the loading of the 3 wt% hybrid filler in PU, we observed the improvement of Young's modulus -200% and the surface resistivity of 10(9.5) ohm/sq without sacrificing the elongation at break.


Assuntos
Grafite/química , Nanocompostos/química , Óxidos/química , Poliuretanos/química , Análise Espectral Raman , Temperatura
9.
J Nanosci Nanotechnol ; 14(8): 5718-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25935995

RESUMO

Reduced graphene oxide (RGO) based polyurethane (PU) nanocomposites have been successfully prepared without using solvent by in-situ polymerization. RGO was derived from microwave (MW) irradiation of graphite oxide (GO) powder prepared by a modified Hummer's method. A minimum amount of poly(tetramethylene glycol) (PTMEG) was added during the dispersion of RGO in a solvent to stabilize the graphene sheets and to prevent RGO from the restacking after the removal of the solvent. After the reaction of RGO with 4,4'-diphenylmethane diisocyanate (MDI), we obtained the concentrate of RGO in MDI with a minimum amount of PTMEG. Our method facilitated the fine dispersion of RGO in PU elastomers and improved the interfacial strength between RGO and PU. With the incorporation of 2.0 wt% of RGO, the tensile strength and Young's modulus of the PU nanocomposites increased by 30% and 50%, respectively without sacrificing the elongation at break. It was found that the crystalline portion of hard segments of the PU was lowered by the RGO in the nanocomposites.


Assuntos
Grafite/química , Nanocompostos , Poliuretanos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos/química
10.
Nanotechnology ; 24(47): 475102, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24177451

RESUMO

Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ∼2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Pontos Quânticos/toxicidade , Coloração e Rotulagem , Água/química , Óxido de Zinco/síntese química , Tecido Adiposo/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Antibacterianos/química , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Resinas Epóxi/síntese química , Resinas Epóxi/química , Escherichia coli/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrodinâmica , Camundongos , Testes de Sensibilidade Microbiana , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Anidridos Ftálicos/síntese química , Anidridos Ftálicos/química , Pontos Quânticos/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Eletricidade Estática , Óxido de Zinco/química
11.
J Nanosci Nanotechnol ; 12(5): 4207-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852374

RESUMO

A stepwise sol-gel method for the synthesis of stable colloidal TiO2 using hydrolysis and condensation reactions of titanium tetraisopropoxide (TTP) was investigated. The surface modification was carried out using 3-glycidoxypropyltrimethoxysilane (GPTMS). The particle size range of the modified TiO2 observed by TEM was 3-8 nm. The nanocomposites based on an epoxy resin and the modified TiO2 showed strong UV absorption, but maintained high transmittance within the visible region. TEM images of the nanocomposites confirmed the homogenous and fine dispersion of the TiO2 nanoparticles in the epoxy resin. The refractive index of the nanocomposites increased linearly with increasing TiO2 content. With 60% TiO2 by weight, the transmittance and refractive index of the nanocomposite were 98.4% and 1.657, respectively.

12.
J Nanosci Nanotechnol ; 12(5): 4305-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852395

RESUMO

A new method for the preparation of graphene nanoplatelets (GNP) from graphite intercalation compounds (GICs) was investigated. Donor-type ternary GICs of natural graphites, lithium ions and tetrahydrofurane (NG-Li-THF) were synthesized via a solution process, with the lithium ions in the GICs then exchanged with different tetra alkyl ammonium cations to expand the interlayer distance (d-spacing) of these GICs. Microwave irradiation of these GICs resulted in the exfoliation of GICs, forming so-called 'worm-like exfoliated graphites.' Sonication of the worm-like exfoliated graphites in acetone resulted in GNPs with different aspect ratios. Powder X-ray diffractometry, scanning electron microscopy and transmission electron microscopy were employed to characterize the GICs and GNPs. It was found that the ion-exchange of NG-Li-THF increased the volume expansion ratios, and the molecular structure of the tetra alkyl ammonium cations affected the aspect ratios of the GNPs after exfoliation.

13.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215012

RESUMO

The influence of graphene nanoplates (GNPs) obtained by the ecofriendly exfoliation of natural graphite has been addressed on the mechanical and thermal insulating properties of rigid polyurethane foams (RPUFs). Few-layer GNPs with few defects were prepared in polymeric 4,4'-diphenylmethane diisocyanate (pMDI) under ultrasonication to obtain a GNP/pMDI dispersion. GNP/pMDI dispersions with different GNP concentrations were used to prepare RPUF nanocomposites via in situ polymerization. An important finding is that the GNP/pMDI dispersion exhibits lyotropic liquid crystalline behavior. It was found that the unique orientation of GNPs above the concentration of 0.1 wt% in the dispersion affected the mechanical and thermal insulation properties of the RPUF nanocomposites. GNP/RPUF nanocomposites with GNP concentrations at 0.2 wt% or more showed better thermal insulating properties than neat RPUF. The lyotropic liquid crystalline ordering of GNPs provides stable nucleation for bubble formation during foaming and prevents bubble coalescence. This decreases the average cell size and increases the closed cell content, producing GNP/RPUF nanocomposites with low thermal conductivity. Furthermore, GNPs incorporated into RPUF act as a barrier to radiant heat transfer through the cells, which effectively reduces the thermal conductivity of the resulting nanocomposites. It is expected that the nanocomposite of RPUF investigated in this study can be applied practically to improve the performance of thermal insulation foams.

14.
J Nanosci Nanotechnol ; 11(5): 4448-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780474

RESUMO

The rheological properties of epoxy resins filled with organoclay and colloidal nanosilica were investigated by employing a parallel plate rheometer in flow mode at 25 degrees C. Shear thickening and shear thinning behaviors were observed in the epoxy resins filled with a mixture of organoclay and colloidal nanosilica. Minima were observed in the relaxation time of the systems consisting of epoxy resins filled with organoclay and colloidal silica as the content of colloidal nanosilica was increased. It seems that the colloidal nanosilica increased the mobility of the filled epoxy resins and reduced the interactions between the silicate layers in the systems.

15.
J Nanosci Nanotechnol ; 11(2): 1421-4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456203

RESUMO

Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

16.
J Nanosci Nanotechnol ; 11(8): 7202-5, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103157

RESUMO

In order to prepare transparent hybrid films of high refractive index, nanoparticles of TiO2 were prepared and dispersed in a silicone epoxy (SE) resin synthesized from diphenyl silane diol and [2-(3,4-epoxycyclohexyl)ethyl] trimethoxysilane by sol-gel reactions. It was found that amorphous TiO2 nanoparticles of about 5 nm modified with hexahydro-4-methyl phthalic anhydride [HMPA] were dispersed in the SE resin without agglomerations. The refractive index of the hybrids increased linearly with increasing the TiO2 contents. The hybrid containing 30 wt% of the TiO2 particles showed light transmittance of 94% at 450 nm and refractive index of 1.63. The fine dispersion of the TiO2 nanoparticles was attributable to the sol-gel reactions between the SE resin and TiO2 nanoparticles and the modification of the TiO2 particles with HMPA.

17.
ACS Omega ; 6(43): 28848-28858, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746577

RESUMO

Bio-based polyurethane (PU) has recently drawn our attention due to the increasing interest in sustainability and the risks involved with petroleum depletion. Herein, bio-based self-healing PU with a novel polyol, i.e., eugenol glycol dimer (EGD), was synthesized and characterized for the first time. EGD was designed to have pairs of primary, secondary, and aromatic alcohols, which all are able to be involved in urethane bond formation and to show self-healing and antioxidant effects. EGD was incorporated into a mixture of the prepolymer of polyol (tetramethylene ether glycol) and 4,4'-methylene diphenyl diisocyanate to synthesize PU. EGD-PU showed excellent self-healing properties (99.84%), and it maintained its high self-healing property (84.71%) even after three repeated tests. This dramatic self-healing was induced through transcarbamoylation by the pendant hydroxyl groups of EGD-PU. The excellent antioxidant effect of EGD-PU was confirmed by 2,2-diphenyl-1-picrylhydrazyl analysis. Eugenol-based EGD is a promising polyol chain extender that is required in the production of bio-based, self-healing, and recyclable polyurethane; therefore, EGD-PU can be applied to bio-based self-healable films or coating materials as a substitute for petroleum-based PU.

18.
J Nanosci Nanotechnol ; 10(5): 3370-4, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20358959

RESUMO

Nanocomposites based on poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) and multiwalled carbon nanotubes (MWNTs) were prepared. In order to facilitate the dispersion of MWNTs in the nanocomposites, the pristine MWNTs were reduced by Li to anions and SEBS was sulfonated. Poly(4-styrenesulfonic acid) (PSSA) was also added to either SEBS or S-SEBS and the morphology and properties of the nanocomposites were examined. Nanocomposites prepared from S-SEBS, PSSA, and the modified MWNTs showed a threshold decrease in electrical resistivity due to the percolation of MWNTs at a critical MWNT content (P(c)) lower than those for the nanocomposites based on SEBS, PSSA, and the MWNTs. It was found that the P(c) decreased with increasing the concentration of PSSA in the nanocomposites containing S-SEBS. The efficient percolation of MWNTs in the S-SEBS/PSSA nanocomposites was attributed to interactions between the ionic moieties of MWNTs and S-SEBS and the fine dispersion of the MWNTs. Nanocomposites based on S-SEBS showed large increase of rubbery plateau modulus compared with those based on SEBS. PSSA played the role of plasticizer of sulfonated PS blocks above T(g) of PS blocks in S-SEBS.

19.
Polymers (Basel) ; 12(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353941

RESUMO

The possibility of exchange reactions and thermal self-healing in blends of thermoplastic polyurethane (TPU) and phenoxy resin was investigated herein. The analyses were based on characterization obtained via differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), and tensile test. A new phenoxy resin was synthesized from eugenol, and blends with different types of TPU were prepared to investigate the exchange reaction, thermal self-healing, and mechanical properties. The influence of phenoxy resin content on the mechanical behavior and healing efficiency was studied. Improvement of storage modulus owing to the increase of phenoxy resin content was observed. Results suggest that the exchange reaction between phenoxy- and ester-type TPU occurred during thermal treatment. However, little exchange occurred between phenoxy resin and ether-type TPU. Specifically, only ester-type TPU exhibited a significant exchange reaction in the phenoxy resin blend. Furthermore, in the presence of a catalyst (e.g., zinc acetate), the exchange reaction readily occurred, and the healing efficiency improved by the addition of the catalyst and increase in the phenoxy content.

20.
Polymers (Basel) ; 11(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30960487

RESUMO

In this study, the self-healing properties of waterborne polyurethane (WPU) were implemented by chitosan as a chain extender of polyurethane prepolymers. The physical properties and self-healing efficiency of WPU were studied by changing the molar fractions of chitosan from 0.1 to 0.3. After thermal treatment for 24 h at 110 °C, the self-healing efficiency for the tensile strength of the highest chitosan content (WPU-C3) was found to be 47%. The surface scratch was also completely restored. The efficiency of the sample with the lowest chitosan content (WPU-C1) was found to be 35%, while that of the control sample without chitosan (WPU-C0) was 4%. The self-healing properties of the as-prepared films were attributed to the exchange reactions between the hydroxyl groups of chitosan and the urethane groups in the films at elevated temperature. It is inferred that self-healing WPU can be synthesized by chain extension with chitosan.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa