Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(2): 355-368.e10, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693352

RESUMO

Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Hirschsprung/genética , Proteínas Proto-Oncogênicas c-ret/genética , Alelos , Animais , Sítios de Ligação , Modelos Animais de Doenças , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Trato Gastrointestinal/embriologia , Humanos , Camundongos , Camundongos Transgênicos , RNA não Traduzido/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
2.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360746

RESUMO

An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.


Assuntos
Encefalopatias , Epilepsia , Transtornos do Neurodesenvolvimento , Animais , Feminino , Masculino , Camundongos , Encefalopatias/genética , Epilepsia/genética , Neurônios GABAérgicos/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurotransmissores
3.
Proc Natl Acad Sci U S A ; 119(51): e2212810119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508674

RESUMO

Chromatin accessibility assays are central to the genome-wide identification of gene regulatory elements associated with transcriptional regulation. However, the data have highly variable quality arising from several biological and technical factors. To surmount this problem, we developed a sequence-based machine learning method to evaluate and refine chromatin accessibility data. Our framework, gapped k-mer SVM quality check (gkmQC), provides the quality metrics for a sample based on the prediction accuracy of the trained models. We tested 886 DNase-seq samples from the ENCODE/Roadmap projects to demonstrate that gkmQC can effectively identify "high-quality" (HQ) samples with low conventional quality scores owing to marginal read depths. Peaks identified in HQ samples are more accurately aligned at functional regulatory elements, show greater enrichment of regulatory elements harboring functional variants, and explain greater heritability of phenotypes from their relevant tissues. Moreover, gkmQC can optimize the peak-calling threshold to identify additional peaks, especially for rare cell types in single-cell chromatin accessibility data.


Assuntos
Cromatina , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos , Regulação da Expressão Gênica , Genoma
4.
J Am Chem Soc ; 146(20): 13836-13845, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717976

RESUMO

Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.


Assuntos
Liberação Controlada de Fármacos , Hidrogéis , Hidrogéis/química , Hidrogéis/síntese química , Animais , Camundongos , Acetais/química , Paclitaxel/química , Paclitaxel/farmacocinética , Éteres/química , Polietilenoglicóis/química , Polímeros/química , Polímeros/síntese química , Portadores de Fármacos/química
5.
Curr Issues Mol Biol ; 46(6): 5712-5723, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921013

RESUMO

Aspergillus fumigatus is commonly found in the airway and is associated with airway inflammatory diseases. Zinc oxide (ZO) is known to be an essential microelement that facilitates fungal survival, growth, and proliferation. This study aimed to investigate the impact of ZO on A. fumigatus-induced fungal sinusitis in rabbits. Twenty-eight New Zealand white rabbits were divided into four groups for this study. Group 1 (6 sides) was treated with intramaxillary phosphate buffer saline (PBS) served as the negative control, Group 2 (6 sides) received intramaxillary PBS and ZO, Group 3 (8 sides) was treated with intramaxillary A. fumigatus alone, and Group 4 (8 sides) treated with intramaxillary A. fumigatus with ZO. After 4 and 12 weeks, sinus mucosal cytokine and transcription factor expressions were determined. A histological analysis was performed to determine inflammatory cell infiltration, number of secretory cells, and mucosal thickness. Fungal biofilm formation was determined using confocal laser microscopy. The intramaxillary instillation of A. fumigatus conidia led to an increase in protein and mRNA expression of interleukin (IL)-1ß and IL-8 in the maxillary sinus mucosa. They were associated with mitogen-activated protein kinase and activator protein-1. Furthermore, intramaxillary instillation of fungal conidia resulted in significant enhancement of inflammatory cell infiltration, epithelial thickening, and fungal biofilm formation. However, intramaxillary ZO did not have a significant impact on A. fumigatus-induced cytokine protein and mRNA expression, and inflammatory cell infiltration and epithelial thickness in sinonasal mucosa. While intramaxillary instillation of A. fumigatus increased mucosal inflammation, cytokine production, and biofilm formation, the intramaxillary application of ZO did not have a significant influence on inflammation in the maxillary sinus mucosa.

6.
Genome Res ; 31(9): 1638-1645, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34285053

RESUMO

Massively parallel reporter assays (MPRAs) are a high-throughput method for evaluating in vitro activities of thousands of candidate cis-regulatory elements (CREs). In these assays, candidate sequences are cloned upstream or downstream from a reporter gene tagged by unique DNA sequences. However, tag sequences may themselves affect reporter gene expression and lead to major potential biases in the measured cis-regulatory activity. Here, we present a sequence-based method for correcting tag-sequence-specific effects and show that our method can significantly reduce this source of variation and improve the identification of functional regulatory variants by MPRAs. We also show that our model captures sequence features associated with post-transcriptional regulation of mRNA. Thus, this new method helps not only to improve detection of regulatory signals in MPRA experiments but also to design better MPRA protocols.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Viés , Bioensaio , Genes Reporter
7.
Muscle Nerve ; 69(4): 498-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294129

RESUMO

INTRODUCTION/AIMS: Oxaliplatin is a platinum-based anti-cancer drug widely used in colorectal cancer patients, but it may cause peripheral neuropathy. As one of the main causes of oxaliplatin-induced peripheral neuropathy (OPN) is oxidative stress, which is also a key factor causing diabetic peripheral neuropathy (DPN), the aim of this study was to evaluate the preventive effects of alpha-lipoic acid (ALA) and epalrestat (EP), which are used for the treatment of DPN, in an OPN zebrafish model. METHODS: Tg(nbt:dsred) transgenic zebrafish, with sensory nerves in the peripheral lateral line, were treated with oxaliplatin, oxaliplatin/EP, and oxaliplatin/ALA for 4 days. A confocal microscope was used to visualize and quantify the number of axon bifurcations in the distal nerve ending. To analyze the formation of synapses on sensory nerve terminals, quantification of membrane-associated guanylate kinase (MAGUK) puncta was performed using immunohistochemistry. RESULTS: The number of axon bifurcations and intensity of MAGUK puncta were significantly reduced in the oxaliplatin-treated group compared with those in the embryo medium-treated group. In both the oxaliplatin/EP and oxaliplatin/ALA-treated groups, the number of axon bifurcations and intensity of MAGUK puncta were greater than those in the oxaliplatin-treated group (p < .0001), and no significant difference was observed between larvae treated with oxaliplatin/ALA 1 µM and oxaliplatin/EP 1 µM (p = .4292). DISCUSSION: ALA and EP have protective effects against OPN in zebrafish. Our findings show that ALA and EP can facilitate more beneficial treatment for OPN.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Rodanina/análogos & derivados , Tiazolidinas , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Peixe-Zebra , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Antineoplásicos/toxicidade
8.
Environ Sci Technol ; 58(6): 2728-2738, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38232385

RESUMO

Understanding geochemical dissolution in porous materials is crucial, especially in applications such as geological CO2 storage. Accurate estimation of reaction rates enhances predictive modeling in geochemical-flow simulations. Fractured porous media, with distinct transport time scales in fractures and the matrix, raise questions about fracture-matrix interface dissolution rates compared to bulk dissolution rate and the scale-dependency of reaction rate averaging. Our investigation delves into these factors, studying the impact of flow rate and mineralogy on interface dissolution patterns. By injecting carbonated water into carbonate rock samples containing a central channel (mimicking fracture hydrodynamics), our study utilized µCT X-ray imaging at 3.3 µm spatial resolution to estimate the reaction rate and capture the change in pore morphology. Results revealed dissolution rates significantly lower (up to 4 orders of magnitude) than batch experiments. Flow rate notably influenced fracture profiles, causing uneven enlargement at low rates and uniform widening at higher ones. Ankerite presence led to a dissolution-altered layer on the fracture surface, showing high permeability and porosity without greatly affecting the dissolution rate, unlike clay-rich carbonates. This research sheds light on controlling factors influencing dissolution in subsurface environments, critical for accurate modeling in diverse applications.


Assuntos
Dióxido de Carbono , Carbonatos , Microtomografia por Raio-X
9.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768687

RESUMO

Airborne fungi are ubiquitous in the environment and are commonly associated with airway inflammatory diseases. The innate immune defense system eliminates most inhaled fungi. However, some influence the development of chronic rhinosinusitis. Fungal CRS is thought of as not a common disease, and its incidence increases over time. Fungi are present in CRS patients and in healthy sinonasal mucosa. Although the immunological mechanisms have not been entirely explained, CRS patients may exhibit different immune responses than healthy people against airborne fungi. Fungi can induce Th1 and Th2 immune responses. In CRS, Th2-related immune responses against fungi are associated with pattern recognition receptors in nasal epithelial cells, the production of inflammatory cytokines and chemokines from nasal epithelial cells, and interaction with innate type 2 cells, lymphocytes, and inflammatory cells. Fungi also interact with neutrophils and eosinophils and induce neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs). NETs and EETs are associated with antifungal properties and aggravation of chronic inflammation in CRS by releasing intracellular granule proteins. Fungal and bacterial biofilms are commonly found in CRS and may support chronic and recalcitrant CRS infection. The fungal-bacterial interaction in the sinonasal mucosa could affect the survival and virulence of fungi and bacteria and host immune responses. The interaction between the mycobiome and microbiome may also influence the host immune response, impacting local inflammation and chronicity. Although the exact immunopathologic role of fungi in the pathogenesis of CRS is not completely understood, they contribute to the development of sinonasal inflammatory responses in CRS.


Assuntos
Rinite , Sinusite , Humanos , Rinite/patologia , Sinusite/patologia , Mucosa Nasal/metabolismo , Inflamação/metabolismo , Fungos , Doença Crônica
10.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139091

RESUMO

Chronic rhinosinusitis (CRS) is characterized by inflammatory cell infiltration in the sinonasal mucosa. Eosinophil and neutrophil extracellular traps (EETs and NETs, respectively) are prominently found in CRS. This study aimed to investigate the effect of airborne fungi, Alternaria alternata and Aspergillus fumigatus, on EET and NET formation. Nasal epithelial cells, eosinophils, and neutrophils were isolated from eosinophilic CRS (ECRS), non-ECRS (NECRS), and healthy control. We determined eosinophil and neutrophil transepithelial migration after fungal treatment. We then determined the release of EETs and NETs by fungi using Sytox Green staining and determined the role of reactive oxygen species (ROS) using ROS inhibitors. We identified more abundant EETs and NETs in ECRS than in NECRS. A. alternata and A. fumigatus enhanced eosinophil and neutrophil transepithelial migration. A. fumigatus strongly induced EET and NET formation in CRS and, simultaneously, suppressed fungal metabolic activity. EET formation in CRS is associated with nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and NET formation with NADPH-oxidase and mitochondrial ROS. A. fumigatus, but not A. alternata, induced EET and NET formation, and peripheral blood eosinophils and neutrophils exhibited different immune responses against A. fumigatus following the inflammatory status of the host. Aspergillus-fumigatus-induced EET and NET formation plays a crucial role in CRS pathogenesis.


Assuntos
Armadilhas Extracelulares , Rinossinusite , Sinusite , Humanos , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Eosinófilos , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Doença Crônica , Sinusite/metabolismo , Aspergillus , Aspergillus fumigatus , NADPH Oxidases/metabolismo
11.
Wien Med Wochenschr ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071302

RESUMO

Beethoven's autopsy findings of cirrhosis may have been due to alcoholism. This condition may have been underemphasized historically, given its stigma and the incongruence with the often heroic portrayal of Beethoven. We therefore aimed to compare how medical experts and biographers writing for a non-medical audience describe his final illness in the context of alcoholism. English-language biographies were identified using a survey of biographies of Beethoven and supplemented by the authors. English-language medical publications were identified by searching for "Beethoven" in the PubMed® MEDLINE database. We included studies that mentioned Beethoven's final illness and death. We recorded statements regarding alcohol consumption, alcoholism, or alcohol use disorder, and the role of alcohol in Beethoven's death. The most commonly cited final illness was liver disease. Alcohol use was more frequently mentioned in biographies, but alcoholism less so. Alcohol use was invoked as a possible cause of final illness more frequently by medical publications.

12.
Hum Mol Genet ; 29(11): 1922-1932, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32436959

RESUMO

Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of 'expressed' genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.


Assuntos
Aterosclerose/genética , Pressão Sanguínea/genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Aorta/fisiopatologia , Aterosclerose/fisiopatologia , Pressão Sanguínea/fisiologia , Cromatina , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Coração/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/fisiopatologia , Proteínas de Membrana/genética , Artérias da Tíbia/fisiopatologia
13.
J Transl Med ; 20(1): 590, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514072

RESUMO

BACKGROUND AND AIMS: Kinin B1 receptors (B1Rs) are implicated in the pathogenesis of fibrosis. This study examined the anti-fibrotic effects of B1R blockade with BI 113823 in two established mouse models of hepatic fibrosis induced by intraperitoneal carbon tetrachloride (CCl4) injection or bile duct ligation (BDL). The mechanisms underlying the protection afforded by B1R inhibition were examined using human peripheral blood cells and LX2 human hepatic stellate cells (HSCs). METHODS: Fibrotic liver diseases were induced in mice by intraperitoneal carbon tetrachloride (CCl4) injection for 6 weeks, and by bile duct ligation (BDL) for 3 weeks, respectively. Mice received daily treatment of vehicle or BI 113823 (B1R antagonist) from onset of the experiment until the end of the study. RESULTS: B1Rs were strongly induced in fibrotic mouse liver. BI 113823 significantly attenuated liver fibrosis and portal hypertension (PH), and improved survival in both CCl4 and BDL mice. BI 113823 significantly reduced the expression of fibrotic proteins α-SMA, collagens 1, 3, 4, and profibrotic growth factors PDGF, TGFß, CTGF, VEGF, proliferating cell nuclear antigen; and reduced hepatic Akt phosphorylation in CCl4- and BDL-induced liver fibrosis. BI 113823 also reduced expression of Cytokines IL-1, IL-6; chemokines MCP-1, MCP-3 and infiltration of inflammatory cells; and inhibited human monocyte and neutrophil activation, transmigration, TNF-α & MPO production in vitro. BI 113823 inhibited TGF-ß and B1R agonist-stimulated human-HSC activation, contraction, proliferation, migration and fibrosis protein expression, and inhibited activation of PI3K/Akt signalling pathway. CONCLUSIONS: B1Rs merits consideration as a novel therapeutic target for chronic liver fibrosis and PH.


Assuntos
Hipertensão Portal , Cirrose Hepática , Receptores de Peptídeos , Animais , Humanos , Camundongos , Tetracloreto de Carbono , Fibrose , Células Estreladas do Fígado , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Cininas/metabolismo , Cininas/farmacologia , Cininas/uso terapêutico , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Peptídeos/antagonistas & inibidores
14.
Biomacromolecules ; 23(9): 3810-3821, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35929737

RESUMO

Renal ischemia-reperfusion (IR) injury is an inevitable complication in various clinical settings including kidney transplantation and major vascular surgeries. Renal IR injury is a major risk factor for acute kidney injury, which still remains a major clinical challenge without effective therapy. The main cause of renal IR injury is the massive production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) that initiate inflammatory signaling pathways, leading to renal cell death. In this study, we developed fucoidan-coated polymeric prodrug (Fu-PVU73) nanoparticles as renal IR-targeting nanotherapeutics that can rapidly eliminate H2O2 and exert anti-inflammatory and antiapoptotic effects. Fu-PVU73 nanoparticles were composed of H2O2-activatable antioxidant and anti-inflammatory polymeric prodrug (PVU73) that incorporated H2O2-responsive peroxalate linkages, ursodeoxycholic acid (UDCA), and vanillyl alcohol (VA) in its backbone. Fu-PVU73 nanoparticles rapidly scavenged H2O2 and released UDCA and VA during H2O2-triggered degradation. In the study of renal IR injury mouse models, Fu-PVU73 nanoparticles preferentially accumulated in the IR injury-induced kidney and markedly protected the kidney from IR injury by suppressing the generation of ROS and the expression of proinflammatory cytokines. We anticipate that Fu-PVU73 nanoparticles have tremendous therapeutic potential for not only renal IR injury but also various ROS-associated inflammatory diseases.


Assuntos
Nanopartículas , Pró-Fármacos , Traumatismo por Reperfusão , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Rim/metabolismo , Camundongos , Nanopartículas/uso terapêutico , Polímeros/uso terapêutico , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
15.
Biomacromolecules ; 23(9): 3887-3898, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36007196

RESUMO

Cancer cells are more vulnerable to reactive oxygen species (ROS)-mediated oxidative stress than normal cells due to disturbed redox balance. It can be postulated that ROS-generating drug carriers exert anticancer actions, leading to combination anticancer therapy with drug payloads. Here, we report a ROS-generating polyprodrug of cinnamaldehyde (CA) that not only serves as a drug carrier but also synergizes with drug payloads. The polyprodrug of CA (pCA) incorporates ROS-generating CA in the backbone of an amphiphilic polymer through an acid-cleavable acetal linkage. pCA could self-assemble with tumor-targeting lipopeptide (DSPE-PEG-RGD) and encapsulate doxorubicin (DOX) to form T-pCAD micelles. At acidic pH, T-pCAD micelles release both CA and DOX to exert synergistic anticancer actions. Animal studies using mouse xenograft models revealed that T-pCAD micelles accumulate in tumors preferentially and suppress the tumor growth significantly. Based on the oxidative stress amplification and acid-responsiveness, ROS-generating pCAD micelles hold tremendous potential as drug carriers for combination anticancer therapy.


Assuntos
Micelas , Neoplasias , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio
16.
Proc Natl Acad Sci U S A ; 116(22): 10636-10645, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31068470

RESUMO

The rationale for genome-wide association study (GWAS) results is sequence variation in cis-regulatory elements (CREs) modulating a target gene's expression as the major cause of trait variation. To understand the complete molecular landscape of one of these GWAS loci, we performed in vitro reporter screens in cardiomyocyte cell lines for CREs overlapping nearly all common variants associated with any of five independent QT interval (QTi)-associated GWAS hits at the SCN5A-SCN10A locus. We identified 13 causal CRE variants using allelic reporter activity, cardiomyocyte nuclear extract-based binding assays, overlap with human cardiac tissue DNaseI hypersensitive regions, and predicted impact of sequence variants on DNaseI sensitivity. Our analyses identified at least one high-confidence causal CRE variant for each of the five sentinel hits that could collectively predict SCN5A cardiac gene expression and QTi association. Although all 13 variants could explain SCN5A gene expression, the highest statistical significance was obtained with seven variants (inclusive of the five above). Thus, multiple, causal, mutually associated CRE variants can underlie GWAS signals.


Assuntos
Regulação da Expressão Gênica/genética , Coração/fisiopatologia , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Alelos , Animais , Linhagem Celular , Eletrocardiografia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Miocárdio/química , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética
17.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328451

RESUMO

BACKGROUND: Asian sand dust (ASD) and Aspergillus fumigatus are known risk factors for airway mucosal inflammatory diseases. Bacterial and fungal biofilms commonly coexist in chronic rhinosinusitis and fungus balls. We evaluated the effects of ASD on the development of A. fumigatus biofilm formation on nasal epithelial cells. METHODS: Primary nasal epithelial cells were cultured with A. fumigatus conidia with or without ASD for 72 h. The production of interleukin (IL)-6, IL-8, and transforming growth factor (TGF)-ß1 from nasal epithelial cells was determined by the enzyme-linked immunosorbent assay. The effects of ASD on A. fumigatus biofilm formation were determined using crystal violet, concanavalin A, safranin staining, and confocal scanning laser microscopy. RESULTS: ASD and A. fumigatus significantly enhanced the production of IL-6 and IL-8 from nasal epithelial cells. By coculturing A. fumigatus with ASD, the dry weight and safranin staining of the fungal biofilms significantly increased in a time-dependent manner. However, the increased level of crystal violet and concanavalin A stain decreased after 72 h of incubation. CONCLUSIONS: ASD and A. fumigatus induced the production of inflammatory chemical mediators from nasal epithelial cells. The exposure of A. fumigatus to ASD enhanced the formation of biofilms. The coexistence of ASD and A. fumigatus may increase the development of fungal biofilms and fungal inflammatory diseases in the sinonasal mucosa.


Assuntos
Aspergillus fumigatus , Areia , Aspergillus fumigatus/metabolismo , Biofilmes , Concanavalina A/farmacologia , Poeira , Células Epiteliais/metabolismo , Violeta Genciana/metabolismo , Violeta Genciana/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Nasal/metabolismo
18.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565992

RESUMO

Chronic rhinosinusitis (CRS) is characterized by chronic inflammation of the sinonasal mucosa with epithelial dedifferentiation toward the mesenchymal phenotype, known as the epithelial-mesenchymal transition (EMT). Asian sand dust (ASD) can induce nasal mucosal inflammation and cause the development of EMT. Korean red ginseng (KRG) and ginsenoside Rg3 have been used as traditional herbal medicines to treat various diseases. The aim of this study was to investigate their effect on ASD-induced EMT in nasal epithelial cells. Primary nasal epithelial cells were incubated with ASD with or without KRG or Rg3, and the production of transforming growth factor-ß1 (TGF-ß1) and interleukin (IL)-8 was measured. EMT markers were determined by RT-PCR, Western blot analysis, and confocal microscopy, and transcription factor expression by Western blot analysis. The effect on cell migration was evaluated using the wound scratch assay. Results showed ASD-induced TGF-ß1 production, downregulation of E-cadherin, and upregulation of fibronectin in nasal epithelial cells. KRG and Rg3 suppressed TGF-ß1 production (31.7% to 43.1%), upregulated the expression of E-cadherin (26.4% to 88.3% in mRNA), and downregulated that of fibronectin (14.2% to 46.2% in mRNA and 52.3% to 70.2% in protein). In addition, they suppressed the ASD-induced phosphorylation of ERK, p38, and mTOR, as well as inhibiting the ASD-induced migration of nasal epithelial cells (25.2% to 41.5%). The results of this study demonstrate that KRG and Rg3 inhibit ASD-induced EMT by suppressing the activation of ERK, p38, and mTOR signaling pathways in nasal epithelial cells.


Assuntos
Transição Epitelial-Mesenquimal , Panax , Caderinas/metabolismo , Movimento Celular , Poeira , Células Epiteliais , Fibronectinas/metabolismo , Ginsenosídeos , Humanos , Inflamação/metabolismo , Panax/metabolismo , RNA Mensageiro/metabolismo , Areia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
J Gene Med ; 23(3): e3306, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450091

RESUMO

BACKGROUND: Long non-coding RNA MCM3AP antisense RNA 1 (lncRNA MCM3AP-AS1) has a regulatory role in the development of diverse malignancies, whereas its role and mechanism in colorectal cancer (CRC) is not yet clear. METHODS: The relative expression of MCM3AP-AS1, miR-19a-3p and forkhead box F2 (FOXF2) mRNA in 53 cases of CRC and its adjacent normal tissues, human normal colonic mucosal cells (FHC cells) and CRC cell lines was examined by a quantitative real-time polymerase chain reaction, and the changes of cell multiplication and migration were examined by the cell counting kit-8 method, EdU test, and scratch-healing test, respectively. Bioinformatics, dual-luciferase reporter gene assay and a RNA immunoprecipitation experiment were adopted to predict and verify the relationship between MCM3AP-AS1 and miR-19a-3p; bioinformatics and dual-luciferase reporter gene assay were adopted to predict and verify the relationship between miR-19a-3p and FOXF2. Western blotting was executed to examine the effects of MCM3AP-AS1 overexpression or knockdown on FOXF2 protein expression. RESULTS: MCM3AP-AS1 expression was down-modulated in CRC, and its dysregulation was linked to unfavorable pathological characteristics. MCM3AP-AS1 significantly impeded the multiplication and migration of CRC cells. MCM3AP-AS1 was recognized as a molecular sponge to suppress miR-19a-3p expression, and FOXF2 was a target gene of miR-19a-3p. MCM3AP-AS1 positively modulated FOXF2 expression, and its biological effect was dependent the on miR-19a-3p/FOXF2 axis. CONCLUSIONS: MCM3AP-AS1 can inhibit CRC promoting by modulating the miR-19a-3p/FOXF2 axis.


Assuntos
Acetiltransferases/metabolismo , Neoplasias Colorretais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Acetiltransferases/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , RNA Antissenso/genética , RNA Longo não Codificante/genética , Transdução de Sinais
20.
Genome Res ; 28(10): 1577-1588, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30139769

RESUMO

Cis-regulatory elements (CRE), short DNA sequences through which transcription factors (TFs) exert regulatory control on gene expression, are postulated to be the major sites of causal sequence variation underlying the genetics of complex traits and diseases. We present integrative analyses, combining high-throughput genomic and epigenomic data with sequence-based computations, to identify the causal transcriptional components in a given tissue. We use data on adult human hearts to demonstrate that (1) sequence-based predictions detect numerous, active, tissue-specific CREs missed by experimental observations, (2) learned sequence features identify the cognate TFs, (3) CRE variants are specifically associated with cardiac gene expression, and (4) a significant fraction of the heritability of exemplar cardiac traits (QT interval, blood pressure, pulse rate) is attributable to these variants. This general systems approach can thus identify candidate causal variants and the components of gene regulatory networks (GRN) to enable understanding of the mechanisms of complex disorders on a tissue- or cell-type basis.


Assuntos
Miocárdio/metabolismo , Elementos Reguladores de Transcrição , Análise de Sequência de DNA/métodos , Fatores de Transcrição/genética , Adulto , Epigenômica , Expressão Gênica , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa