Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(50): 15426-31, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621717

RESUMO

In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Papel , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos/química , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/transplante , Força Compressiva , Ácido Glucurônico/química , Células HeLa , Ácidos Hexurônicos/química , Humanos , Maleatos/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Peso Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Poliestirenos/química , Coelhos , Espectrometria por Raios X , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
2.
Adv Healthc Mater ; 10(13): e2001368, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050609

RESUMO

Advanced stage ovarian cancer is challenging to treat due to widespread seeding of tumor spheroids throughout the mesothelial lining of the peritoneal cavity. In this work, a therapeutic strategy using graphene nanoribbons (GNR) functionalized with 4-arm polyethylene glycol (PEG) and chlorin e6 (Ce6), a sonosensitizer, to target metastatic ovarian cancer spheroids is reported. GNR-PEG-Ce6 adsorbs onto the spheroids and disrupts their adhesion to extracellular matrix proteins or LP-9 mesothelial cells. Furthermore, for spheroids that do adhere, GNR-PEG-Ce6 delays spheroid disaggregation and spreading as well as mesothelial clearance, key metastatic processes following adhesion. Owing to the sonodynamic effects of Ce6 and its localized delivery via the biomaterial, GNR-PEG-Ce6 can kill ovarian cancer spheroids adhered to LP-9 cell monolayers when combined with mild ultrasound irradiation. The interaction with GNR-PEG-Ce6 also loosens cell-cell adhesions within the spheroids, rendering them more susceptible to treatment with the chemotherapeutic agents cisplatin and paclitaxel, which typically have difficulty in penetrating ovarian cancer spheroids. Thus, this material can facilitate effective chemotherapeutic and sonodynamic combination therapies. Finally, the adhesion inhibiting and sonodynamic effects of GNR-PEG-Ce6 are also validated with tumor spheroids derived from the ascites fluid of ovarian cancer patients, providing evidence of the translational potential of this biomaterial approach.


Assuntos
Grafite , Nanotubos de Carbono , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/terapia , Esferoides Celulares
3.
Ann Biomed Eng ; 48(4): 1230-1240, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31916125

RESUMO

Irreversible electroporation (IRE) is an emerging technology for non-thermal ablation of solid tumors. This study sought to integrate electrodes into microporous poly(caprolactone) (PCL) scaffolds previously shown to recruit metastasizing cancer cells in vivo in order to facilitate application of IRE to disseminating cancer cells. As the ideal parallel plate geometry would render much of the porous scaffold surface inaccessible to infiltrating cells, numerical modeling was utilized to predict the spatial profile of electric field strength within the scaffold for alternative electrode designs. Metal mesh electrodes with 0.35 mm aperture and 0.16 mm wire diameter established electric fields with similar spatial uniformity as the parallel plate geometry. Composite PCL-IRE scaffolds were fabricated by placing cylindrical porous PCL scaffolds between two PCL dip-coated stainless steel wire meshes. PCL-IRE scaffolds exhibited no difference in cell infiltration in vivo compared to PCL scaffolds. In addition, upon application of IRE in vivo, cells infiltrating the PCL-IRE scaffolds were successfully ablated, as determined by histological analysis 3 days post-treatment. The ability to establish homogeneous electric fields within a biomaterial that can recruit metastatic cancer cells, especially when combined with immunotherapy, may further advance IRE technology beyond solid tumors to the treatment of systemic cancer.


Assuntos
Materiais Biocompatíveis , Eletroporação , Poliésteres , Animais , Linhagem Celular Tumoral , Condutividade Elétrica , Eletrodos , Feminino , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL
4.
ACS Appl Bio Mater ; 2(4): 1549-1560, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026889

RESUMO

Hypoxia is a hallmark of tumor microenvironments, exerting wide-ranging impacts on key processes of tumor progression and metastasis. However, our understanding of how hypoxia regulates these processes has been based primarily on studying the effects of hypoxia within the primary tumor. Recently, an increasing number of studies have suggested the importance of hypoxic regulation within metastatic target organs, but hypoxic metastatic niches in the body are difficult to access with current imaging techniques, hampering detailed in vivo investigation of hypoxia at metastatic sites. Here, we report an engineered biomaterial scaffold that is able to establish an in vivo hypoxic metastatic niche in a readily accessible area, enabling the investigation of hypoxic regulation at a metastatic site. We engineered hypoxic environments within microporous poly(lactide-co-glycolide) (PLG) scaffolds, which have previously been shown to act as premetastatic niche mimics, via the addition of CoCl2, a hypoxia-mimetic agent. When implanted into the subcutaneous region of mice, CoCl2-containing PLG (Co-PLG) scaffolds established hypoxic microenvironments, as evidenced by the stabilization of hypoxia-inducible factor 1α (HIF1α) and increased blood vessel formation in vitro and in vivo. Furthermore, implanted Co-PLG scaffolds were able to recruit 4T1 metastatic breast cancer cells. These results demonstrate that Co-PLG scaffolds can establish an in vivo hypoxic metastatic niche, providing a novel platform to investigate hypoxic regulation of disseminated tumor cells (DTCs) at target organs.

5.
Mater Sci Eng C Mater Biol Appl ; 100: 949-958, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948131

RESUMO

Over the past few decades, titanium (Ti) implants have been widely used to repair fractured bones. To promote osteogenesis, immobilization of osteoinductive agents, such as recombinant human bone morphogenic protein-2 (rhBMP2), onto the Ti surface is required. In this study, we prepared rhBMP2 immobilized on glycidyl methacrylate (GMA) deposited Ti surface through initiated chemical vapor deposition (iCVD) technique. After preparation, the bio-functionalized Ti surface was characterized by physicochemical analysis. For in vitro analysis, the developed Ti was evaluated by cell proliferation, alkaline phosphatase activity, calcium deposition, and real-time polymerase chain reaction to verify their osteogenic activity against human adipose-derived stem cells (hASCs). The GMA deposited Ti surface was found to effectively immobilize a large dose of rhBMP2 as compared to untreated Ti. Additionally, rhBMP2 immobilized on Ti showed significantly enhanced osteogenic differentiation and increased calcium deposition with nontoxic cell viability. These results clearly confirm that our strategy may provide a simple, solvent-free strategy to prepare an osteoinductive Ti surface for bone tissue engineering applications.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/fisiologia , Proteínas Imobilizadas/farmacologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Engenharia Tecidual/métodos , Titânio/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Tecido Adiposo/citologia , Osso e Ossos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Água/química
6.
J Biol Eng ; 12: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127847

RESUMO

BACKGROUND: While hypoxia has been well-studied in various tumor microenvironments, its role in cancer cell dormancy is poorly understood, in part due to a lack of well-established in vitro and in vivo models. Hypoxic conditions under conventional hypoxia chambers are relatively unstable and cannot be maintained during characterization outside the chamber since normoxic response is quickly established. To address this challenge, we report a robust in vitro cancer dormancy model under a hypoxia-mimicking microenvironment using cobalt chloride (CoCl2), a hypoxia-mimetic agent, which stabilizes hypoxia inducible factor 1-alpha (HIF1α), a major regulator of hypoxia signaling. METHODS: We compared cellular responses to CoCl2 and true hypoxia (0.1% O2) in different breast cancer cell lines (MCF-7 and MDA-MB-231) to investigate whether hypoxic regulation of breast cancer dormancy could be mimicked by CoCl2. To this end, expression levels of hypoxia markers HIF1α and GLUT1 and proliferation marker Ki67, cell growth, cell cycle distribution, and protein and gene expression were evaluated under both CoCl2 and true hypoxia. To further validate our platform, the ovarian cancer cell line OVCAR-3 was also tested. RESULTS: Our results demonstrate that CoCl2 can mimic hypoxic regulation of cancer dormancy in MCF-7 and MDA-MB-231 breast cancer cell lines, recapitulating the differential responses of these cell lines to true hypoxia in 2D and 3D. Moreover, distinct gene expression profiles in MCF-7 and MDA-MB-231 cells under CoCl2 treatment suggest that key cell cycle components are differentially regulated by the same hypoxic stress. In addition, the induction of dormancy in MCF-7 cells under CoCl2 treatment is HIF1α-dependent, as evidenced by the inability of HIF1α-suppressed MCF-7 cells to exhibit dormant behavior upon CoCl2 treatment. Furthermore, CoCl2 also induces and stably maintains dormancy in OVCAR-3 ovarian cancer cells. CONCLUSIONS: These results demonstrate that this CoCl2-based model could provide a widely applicable in vitro platform for understanding induction of cancer cell dormancy under hypoxic stress.

7.
Nanoscale ; 9(47): 18737-18752, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29168523

RESUMO

Biophysical cues, such as topography, and electrical cues can provide external stimulation for the promotion of stem cell neurogenesis. Here, we demonstrate an electroconductive surface nanotopography for enhancing neuronal differentiation and the functional maturation of human neural stem cells (hNSCs). The electroconductive nanopatterned substrates were prepared by depositing a thin layer of titanium (Ti) with nanograting topographies (150 to 300 nm groove/ridge, the thickness of the groove - 150 µm) onto polymer surfaces. The Ti-coated nanopatterned substrate (TNS) induced cellular alignment along the groove pattern via contact guidance and promoted focal adhesion and cytoskeletal reorganization, which ultimately led to enhanced neuronal differentiation and maturation of hNSCs as indicated by significantly elevated neurite extension and the upregulated expression of the neuronal markers Tuj1 and NeuN compared with the Ti-coated flat substrate (TFS) and the nanopatterned substrate (NS) without Ti coating. Mechanosensitive cellular events, such as ß1-integrin binding/clustering and myosin-actin interaction, and the Rho-associated protein kinase (ROCK) and mitogen-activated protein kinase/extracellular signal regulated kinase (MEK-ERK) pathways, were found to be associated with enhanced focal adhesion and neuronal differentiation of hNSCs by the TNS. Among the neuronal subtypes, differentiation into dopaminergic and glutamatergic neurons was promoted on the TNS. Importantly, the TNS increased the induction rate of neuron-like cells exhibiting electrophysiological properties from hNSCs. Finally, the application of pulsed electrical stimulation to the TNS further enhanced neuronal differentiation of hNSCs due probably to calcium channel activation, indicating a combined effect of topographical and electrical cues on stem cell neurogenesis, which postulates the novelty of our current study. The present work suggests that an electroconductive nanopatterned substrate can serve as an effective culture platform for deriving highly mature, functional neuronal lineage cells from stem cells.


Assuntos
Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Células-Tronco Neurais/citologia , Neurônios/citologia , Células Cultivadas , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Adesões Focais , Humanos , Nanotecnologia , Neurogênese , Técnicas de Patch-Clamp
8.
ACS Nano ; 10(11): 9909-9918, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27792310

RESUMO

In vitro culture systems for primary neurons have served as useful tools for neuroscience research. However, conventional in vitro culture methods are still plagued by challenging problems with respect to applications to neurodegenerative disease models or neuron-based biosensors and neural chips, which commonly require long-term culture of neural cells. These impediments highlight the necessity of developing a platform capable of sustaining neural activity over months. Here, we designed a series of polymeric bilayers composed of poly(glycidyl methacrylate) (pGMA) and poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA), designated pGMA:pDMAEMA, using initiated chemical vapor deposition (iCVD). Harnessing the surface-growing characteristics of iCVD polymer films, we were able to precisely engraft acetylcholine-like functionalities (tertiary amine and quaternary ammonium) onto cell culture plates. Notably, pGD3, a pGMA:pDMAEMA preparation with the highest surface composition of quaternary ammonium, fostered the most rapid outgrowth of neural cells. Clear contrasts in neural growth and survival between pGD3 and poly-l-lysine (PLL)-coated surfaces became apparent after 30 days in vitro (DIV). Moreover, brain-derived neurotrophic factor level continuously accumulated in pGD3-cultured neurons, reaching a 3-fold increase at 50 DIV. Electrophysiological measurements at 30 DIV revealed that the pGD3 surface not only promoted healthy maturation of hippocampal neurons but also enhanced the function of hippocampal ionotropic glutamate receptors in response to synaptic glutamate release. Neurons cultured long-term on pGD3 also maintained their characteristic depolarization-induced Ca2+ influx functions. Furthermore, primary hippocampal neurons cultured on pGD3 showed long-term survival in a stable state up to 90 days-far longer than neurons on conventional PLL-coated surfaces. Taken together, our findings indicate that a polymer thin film with optimal acetylcholine-like functionality enables a long-term culture and survival of primary neurons.


Assuntos
Acetilcolina/farmacologia , Técnicas de Cultura de Células , Hipocampo/citologia , Neurônios , Polímeros , Células Cultivadas , Humanos
9.
J Colloid Interface Sci ; 469: 129-137, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874978

RESUMO

Gold nanoparticles (GNPs) are quite attractive materials for use as osteogenic agents due to their potential effects on the stimulation of osteoblast differentiation. In this study, an osseo-integrated titanium (Ti) implant surface coated with GNPs was used for promotion of bone regeneration. We prepared a silanized Ti surface by chemical treatment of (3-Mercaptopropyl) trimethoxysilane (MPTMS) and immobilized the GNP layer (Ti-GNP) on their surfaces via Au-S bonding. The GNP layer is uniformly immobilized on the surface and the layer covers the titanium oxide surface well, as confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Ti-GNP was used to investigate the effectiveness of this system both in vitro and in vivo. The in vitro results showed that the Ti-GNP significantly enhances the osteogenic differentiation with increased mRNA expression of osteogenic differentiation specific genes in human adipose-derived stem cells (ADSCs). Furthermore, the in vivo results showed that Ti-GNP had a significant influence on the osseous interface formation. Through these in vitro and vivo tests, we found that Ti-GNP can be useful as osseo-integration inducing dental implants for formation of an osseous interface and maintenance of nascent bone formation.


Assuntos
Implantes Dentários , Ouro/farmacologia , Nanopartículas Metálicas/química , Osseointegração/efeitos dos fármacos , Titânio/farmacologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Ouro/química , Humanos , Tamanho da Partícula , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Propriedades de Superfície , Titânio/química
10.
J Mater Chem B ; 3(26): 5161-5165, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262590

RESUMO

In the last decade, titanium has been effectively used in the dental field for oral surgery as an implant material. However, disinfected Ti can be easily re-infected by the surrounding environment. Thus, a novel anti-fouling treatment for Ti implants is currently necessary. In this study, we designed an anti-fouling surface comprised of poly N-isopropylacylamide (PIPAAM) grafted Ti by introducing poly glycidyl methacrylate (pGMA) coating via an initiated chemical vapor deposition (iCVD) system to prevent bacterial infection. The results indicate that pristine Ti was well coated with pGMA with a film thickness of approximately 60 nm and uniformly grafted with PIPAAM. The bacteria were effectively detached after rinsing with a buffer solution at room temperature, while hADSCs were well attached on the surface treated Ti surface at oral temperature. All tests clearly confirm that our strategy may be a useful means of imparting anti-fouling characteristics to Ti in order to prevent bacterial adhesion and resultant peri-implantitis.

11.
J Colloid Interface Sci ; 439: 34-41, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463173

RESUMO

Initiated chemical vapor deposition (iCVD) was utilized to generate a 200nm thick, uniform, functionalized polymer nanolayer comprised of glycidyl methacrylate (GMA) on the surface of titanium implants as a means to improve cellular attachment. Dot-patterned GMA-coated specimens were prepared as well as fully coated specimens. In vitro cellular responses, including cell morphology, protein adsorption, cell proliferation assays, alkaline phosphate activity (ALP) assays, and calcium deposition assays were studied using adipose derived stem cells. The mechanical stability of the thin film was investigated by XPS and FE-SEM analysis of the GMA-coated implant after implantation to an extracted bone from a pig. The GMA-coated specimens displayed increased protein adsorption, higher alkaline phosphatase activities, and higher calcium deposition as compared to control sample with no cytotoxicity. Additionally, no defect was observed in the test of mechanical stability. Notably, dot-patterned GMA-coated samples displayed higher alkaline phosphatase activities than others. Functionalized polymer nanolayer deposition via iCVD is a flexible and robust technique capable of mass production of biocompatible layers. These properties make this technique very suitable for implant applications in a variety of ways.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanotecnologia , Polímeros/química , Adsorção , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/toxicidade , Gases , Humanos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Polímeros/toxicidade , Células-Tronco , Propriedades de Superfície , Titânio/química
12.
ACS Nano ; 8(8): 7809-22, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25050736

RESUMO

Various biophysical and biochemical factors are important for determining the fate of neural stem cells (NSCs). Among biophysical signals, topographical stimulation by micro/nanopatterns has been applied to control NSC differentiation. In this study, we developed a hierarchically patterned substrate (HPS) platform that can synergistically enhance the differentiation of human NSCs (hNSCs) by simultaneously providing microscale and nanoscale spatial controls to facilitate the alignment of the cytoskeleton and the formation of focal adhesions. The multiscale HPS was fabricated by combining microgroove patterns (groove size: 1.5 µm), prepared by a conventional photolithographic process, and nanopore patterns (pore diameter: 10 nm), prepared from cylinder-forming block copolymer thin films. The hNSCs grown on the HPS exhibited not only a highly aligned, elongated morphology, but also a greatly enhanced differentiation into neuronal and astrocyte lineages, compared to hNSCs on a flat substrate (FS) or single-type patterned substrates [microgroove patterned substrate (MPS) and nanopore patterned substrate (NPS)]. Interestingly, the application of the HPS directed hNSC differentiation toward neurons rather than astrocytes. The expression of focal adhesion proteins in hNSCs was also significantly increased on the HPS compared to the FS, MPS, and NPS, likely a result of the presence of more focal contact points provided by nanopore structures. Inhibition of both ß1 integrin-mediated binding and the intracellular Rho-associated protein kinase pathway of hNSCs eliminated the beneficial effects of the HPS on focal adhesion formation and actin filament alignment, which subsequently reduced hNSC differentiation. More importantly, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials. The multiscale, hierarchically patterned topography would be useful for the design of functional biomaterial scaffolds to potentiate NSC therapeutic efficacy.


Assuntos
Diferenciação Celular , Microtecnologia/métodos , Nanotecnologia/métodos , Células-Tronco Neurais/citologia , Neurônios/citologia , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Humanos , Mecanotransdução Celular , Microtecnologia/instrumentação , Nanotecnologia/instrumentação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa