RESUMO
This study aimed to screen lactic acid bacteria (LAB) for their anti-inflammatory activity by using RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis. In all, 192 LAB strains were isolated from healthy human feces, of which 8 strains showed excellent nitric oxide (NO) inhibitory activity. Peptidoglycan extracts of these 8 LAB strains were subjected to NO assay, Western blot, and ELISA. Among the 8 tested strains, extracts of 4 strains significantly inhibited the production of NO, related enzyme activities such as inducible nitric oxide synthase and cyclooxygenase 2, and key cytokines such as tumor necrosis factor-α and IL-6 in RAW264.7 cells. The 4 strains belonged to Lactobacillus (CAU1054, CAU1055, CAU1064, and CAU1301). Oral administration of the 4 strains inhibited DSS-induced body weight loss, colon shortening, and colon damage in ICR mice. The colon tissue of the mice treated with Lactobacillus plantarum strain CAU1055 had significantly reduced levels of inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor-α, and IL-6. We found that strain CAU1055 could be used as a candidate probiotic strain for the prevention and treatment of inflammatory bowel disease. Further studies are warranted to confirm the mechanisms of interaction between peptidoglycan of L. plantarum strain CAU1055 and upstream cellular signaling mediators.
Assuntos
Colite/prevenção & controle , Sulfato de Dextrana/farmacologia , Inflamação/prevenção & controle , Lactobacillus plantarum/fisiologia , Lipopolissacarídeos/farmacologia , Animais , Colite/induzido quimicamente , Colite/terapia , Inibidores de Ciclo-Oxigenase 2 , Citocinas/antagonistas & inibidores , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Inflamação/terapia , Lactobacillus plantarum/isolamento & purificação , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Probióticos/administração & dosagem , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Estrogen plays an important role in breast cancer development. While the mechanism of the estrogen effects is not fully elucidated, one possible route is by increasing the stem cell-like properties in the tumors. Tocopherols are known to reduce breast cancer development and progression. The aim of the present study is to investigate the effects of tocopherols on the regulation of breast cancer stemness mediated by estrogen. To determine the effects of tocopherols on estrogen-influenced breast cancer stem cells, the MCF-7 tumorsphere culture system, which enriches for mammary progenitor cells and putative breast cancer stem cells, was utilized. Treatment with estrogen resulted in an increase in the CD44+/CD24- subpopulation and aldehyde dehydrogenase activity in tumorspheres as well as the number and size of tumorspheres. Tocopherols inhibited the estrogen-induced expansion of the breast cancer stem population. Tocopherols decreased the levels of stem cell markers, including octamer-binding transcription factor 4 (OCT4), CD44 and SOX-2, as well as estrogen-related markers, such as trefoil factor (TFF)/pS2, cathepsin D, progesterone receptor and SERPINA1, in estrogen-stimulated tumorspheres. Overexpression of OCT4 increased CD44 and sex-determining region Y-box-2 levels and significantly increased cell invasion and expression of the invasion markers, matrix metalloproteinases, tissue inhibitors of metalloproteinase and urokinase plasminogen activator, and tocopherols inhibited these OCT4-mediated effects. These results suggest a potential inhibitory mechanism of tocopherols in estrogen-induced stemness and cell invasion in breast cancer.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Estrogênios/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator 3 de Transcrição de Octâmero/metabolismo , Tocoferóis/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/metabolismo , Receptores de Estrogênio/metabolismo , Tocoferóis/uso terapêuticoRESUMO
The enantiomeric distribution and profile of volatiles in plants, which affect the biological and organoleptic properties, can be varied depending on extraction methods as well as their cultivars. The secondary volatile components of the needles of three conifer cultivars (Chamaecyparispisifera, Chamaecyparisobtusa, and Thujaorientalis) were compared. Furthermore, the effects of three different extraction methods--solid-phase microextraction (SPME), steam distillation (SD), and solvent extraction (SE)--on the composition and enantiomeric distribution of those volatiles were elucidated. Monoterpene hydrocarbons predominated in all samples, and the compositions of sesquiterpenes and diterpenes differed according to the cultivar. In particular, the yields of oxygenated monoterpenes and sesquiterpenes were greatest for SD, whereas those of sesquiterpenes and diterpenes were highest for SE. On the other hand, more monoterpenes with higher volatility could be obtained with SPME and SD than when using SE. In addition, the enantiomeric composition of nine chiral compounds found in three cultivars differed according to their chemotype. There were also some differences in the yielded oxygenated monoterpenes and sesquiterpene hydrocarbons, but not monoterpene hydrocarbons, according to the extraction method. These results demonstrate that the extraction methods used as well as the cultivars influence the measured volatile profiles and enantiomeric distribution of coniferous needle extracts.
Assuntos
Hidrocarbonetos/química , Sesquiterpenos/química , Traqueófitas/química , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/isolamento & purificação , Monoterpenos/química , Monoterpenos/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificaçãoRESUMO
ß-Thujaplicin, one of the major constituents in Chamaecyparis obtusa, has been demonstrated to exert different health beneficial efficacy, but the role of ß-thujaplicin in regulating mammary tumorigenesis has not been investigated. In this study, we found that ß-thujaplicin significantly suppressed the proliferation through arresting the cell cycle transition from G1 to S phase as well as inhibited the expression of cell cycle-related proteins, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in MCF-7 and T47D luminal subtype breast cancer cells. In addition, estrogen receptor α (ER-α) was down-regulated by ß-thujaplicin via enhanced proteolysis by ubiquitination, which led to cell growth inhibition. These results suggest that ß-thujaplicin may be considered as a potent agent regulating the hormone sensitive mammary tumorigenesis.
Assuntos
Anticarcinógenos/farmacologia , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Monoterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tropolona/análogos & derivados , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Proteólise/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Tropolona/farmacologiaRESUMO
Chamaecyparis obtusa (CO) belongs to the Cupressaceae family, and it is found widely distributed in Japan and Korea. In this study, the anti-proliferative activities of the methanol and water extracts of CO leaves against a human colorectal cancer cell line (HCT116) were investigated. The methanol extract of CO leaves, at a concentration of 1.25 µg/mL, exhibited anti-proliferative activity against HCT116 cells, while displaying no cytotoxicity against Chang liver cells. Comparative global metabolite profiling was performed using gas chromatography-mass spectrometry coupled with multivariate statistical analysis, and it was revealed that anthricin was the major compound contributing to the anti-proliferative activity. The activation of c-Jun N-terminal kinases played a key role in the apoptotic effect of the methanol extract of CO leaves in HCT116 human colon cancer cells. These results suggest that the methanol extract and anthricin derived from CO leaves might be useful in the development of medicines with anti-colorectal cancer activity.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chamaecyparis/química , Neoplasias Colorretais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Extratos Vegetais/química , Antineoplásicos Fitogênicos/química , Apoptose , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metanol/química , Metanol/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacosRESUMO
In this study, we investigated the effect of cycloastragenol (CAG), a triterpenoid isolated from Astragalus membranaceus roots, on regulating the adipogenesis and fat accumulation in vitro and in vivo. During the adipogenesis of 3T3-L1 cells, CAG inhibited lipid accumulation and the expression of key adipogenic factors, proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding protein α (C/EBPα) and increased the expression of Gli1, a key mediator in Hedgehog (Hh) signaling. In HFD-induced animal experiment, CAG significantly reduced body weight gain without affecting brown fat weight. In addition, CAG regulated the expression of PPARγ, C/EBPα, and Gli1 in visceral white adipose tissue (vWAT). We also confirmed the inhibitory effect of CAG on specifically targeting white adipose tissue (WAT) formation in stromal vascular fraction (SVF) cell differentiation. Taken together, these results suggest that CAG may be a potent phytochemical preventing adipogenesis and obesity via Hh signaling. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01403-0.
RESUMO
Following 3R (reduction, refinement, and replacement) principles, we employed the rat liver S9 fraction to mimic liver metabolism of curcumol having high in vitro IC50 on cancer cells. In HCT116 and HT29 colon cancer cells, the metabolites of curcumol by S9 fraction exerted more enhanced activity in inducing cell cycle arrest and apoptosis via regulating the expression of cyclin D1, CDK1, p21, PARP and Bcl-2 than curcumol. In addition, oral administration of curcumol at 4 mg/kg BW significantly suppressed the development of colon tumor induced by azoxymethane/dextran sulfate sodium, and induced cell cycle arrest and apoptosis in tumor tissues. In mass analysis, curcumenol and curzerene were identified as the metabolites of curcumol by S9 fraction metabolism. Taken together, curcumol metabolites showed the enhanced suppressive effect on colon cancer, suggesting that S9 fraction can be considered as simple, fast, and bio-mimicking platform for the screening of chemical libraries on different chronic diseases.
RESUMO
Previous clinical and epidemiological studies of vitamin E have used primarily α-tocopherol for the prevention of cancer. However, γ-tocopherol has demonstrated greater anti-inflammatory and anti-tumor activity than α-tocopherol in several animal models of cancer. This study assessed the potential chemopreventive activities of a tocopherol mixture containing 58% γ-tocopherol (γ-TmT) in an established rodent model of mammary carcinogenesis. Female ACI rats were utilized due to their sensitivity to 17ß-estradiol (E2 ) to induce mammary hyperplasia and neoplasia. The rats were implanted subcutaneously with sustained release E2 pellets and given dietary 0.3% or 0.5% γ-TmT for 2 or 10 wk. Serum E2 levels were significantly reduced by the treatment with 0.5% γ-TmT. Serum levels of inflammatory markers, prostaglandin E2 and 8-isoprostane, were suppressed by γ-TmT treatment. Histology of mammary glands showed evidence of epithelial hyperplasia in E2 -treated rats. Immunohistochemical analysis of the mammary glands revealed a decrease in proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2), and estrogen receptor α (ERα), while there was an increase in cleaved-caspase 3, peroxisome proliferator-activated receptor γ (PPARγ), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in γ-TmT-treated rats. In addition, treatment with γ-TmT resulted in a decrease in the expression of ERα mRNA, whereas mRNA levels of ERß and PPARγ were increased. In conclusion, γ-TmT was shown to suppress inflammatory markers, inhibit E2 -induced cell proliferation, and upregulate PPARγ and Nrf2 expression in mammary hyperplasia, suggesting that γ-TmT may be a promising agent for human breast cancer prevention.
Assuntos
Proliferação de Células , Dieta , Receptor alfa de Estrogênio/metabolismo , Neoplasias Mamárias Experimentais/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama/metabolismo , Tocoferóis/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Hiperplasia/metabolismo , Hiperplasia/patologia , Hiperplasia/prevenção & controle , Técnicas Imunoenzimáticas , Mediadores da Inflamação/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Microssomos Hepáticos/metabolismo , Fator 2 Relacionado a NF-E2/genética , PPAR gama/genética , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos ACI , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tocoferóis/sangueRESUMO
Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.
Assuntos
Espectrometria de Massas em Tandem , Glândula Tireoide , BiotransformaçãoRESUMO
[This corrects the article DOI: 10.1007/s10068-022-01130-y.].
RESUMO
[This corrects the article DOI: 10.1007/s10068-022-01068-1.].
RESUMO
Perilla frutescens is an annual herbaceous plant widely cultivated for oil production in China, Japan, and Korea. In this study, we investigated the effect of perilla oil (PO) on thrombosis induced by collagen and epinephrine (CE) in rats. The oral administration of PO significantly increased prothrombin time (PT) and activated partial thromboplastin time (aPTT) in the blood plasma and inhibited the expression of cells adhesion markers (CAMs) such as intercellular CAM-1 (ICAM-1), vascular CAM (VCAM-1), E-selectin and P-selectin in the aorta tissue. Furthermore, pulmonary occlusion induced by CE in rats was suppressed by PO. α-Linolenic acid (ALA) was quantified at 60.14 ± 2.50 g/100 g of PO, and its oral administration at the same concentration with that in PO exerted the similar effect on PT, aPTT, ICAM-1, VCAM-1, E-selectin and P-selectin in CE-induced thrombosis rats. Taken together, PO and ALA significantly ameliorated thrombosis by regulating CAMs.
RESUMO
Hyperactivation of hedgehog signaling occurs in colorectal cancer stem-like cells (CSCs), a rare subpopulation, potentially involved in metastasis, chemotherapy resistance, and cancer relapse. Garcinone C, a xanthone isolated from mangosteen (Garcinia mangostana), suppresses colorectal cancer in vivo and in vitro by inhibiting Gli1-dependent noncanonical hedgehog signaling. Herein, we investigated the effect of garcinone C on cancer stemness and invasiveness in colorectal cancer; Gli1 was noted as pivotal in maintaining stemness and invasiveness in HCT116 and HT29 CSCs. Garcinone C inhibited the proliferation and self-renewal of HCT116 and HT29 CSCs. Colon cancer stemness markers such as CD44, CD133, ALDH1, and Nanog were significantly decreased by garcinone C. Computational studies showed that garcinone C showed a high affinity with the Gli1 protein ZF domain by forming hydrogen bonds with amino acid residues of ASP244, ARG223, and ASP216. Besides, MG132 blocked the effects of garcinone C on Gli1. Thus, garcinone C suppressed colorectal CSCs by binding to Gli1 and enhancing its degradation. MMP2 and MMP9 levels, invasive-related markers, were increased in HCT116 CSCs but decreased by garcinone C. E-cadherin level was reduced in HCT116 CSCs, while the presence of garcinone C was restored. Garcinone C inhibited the proliferation and invasiveness of colorectal CSCs by targeting Gli1-dependent Hh signaling. Garcinone C may be a potent natural agent against colorectal cancer relapse.
Assuntos
Neoplasias Colorretais , Xantonas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Neoplásicas , Recidiva , Xantonas/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologiaRESUMO
In this study, we investigated the effect of 1,3,5,8-tetrahydroxyxanthone (THX) on the adipogenesis of 3T3-L1 adipocytes. THX, a xanthone isolated from Gentianella acuta, inhibited lipid accumulation in 3T3-L1 adipocytes and reduced the protein levels of the key adipogenic transcriptional factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), in a dose-dependent manner. In addition, THX enhanced the transcriptional activity of Gli1 known as the key indicator of Hedgehog (Hh) signaling activity and increased the expression of Gli1 and its upstream regulator Smo. The Smo activator SAG exerted the similar effect with THX on regulating Gli1, Smo, PPARγ and C/EBPα expression, which led to the suppression of fat formation in 3T3-L1 adipocytes. Furthermore, we found that the inhibitory effect of THX on adipogenesis was derived from regulation of the early stage of adipogenesis. These results suggest that THX suppresses the differentiation of adipocyte through Hh signaling and may be considered as a potent agent for the prevention of obesity.
RESUMO
Many studies have demonstrated that adipogenesis is associated with obesity, and the Hedgehog (Hh) signaling pathway regulates adipogenesis and obesity. Following the screening study of the chemical library evaluating the effect of vitexin on Gli1 transcriptional activity, vitexin was chosen as a candidate for antiadipogenic efficacy. Vitexin significantly reduced lipid accumulation and suppressed C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptor γ) expression, which are known as key adipogenic factors in the early stages of adipogenesis by activating Hh signaling. Furthermore, Hh inhibitor GANT61 reversed the effect of AMP-activated protein kinase (AMPK) activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), indicating that Hh signaling is an upstream regulator of AMPK in 3T3-L1 cells. Vitexin suppressed adipogenesis by regulating Hh signaling and phosphorylation of AMPK, leading to the inhibition of fat formation. These results suggest that vitexin can be considered a potent dietary agent in alleviating lipid accumulation and obesity.
Assuntos
Adipogenia , Proteínas Hedgehog , Células 3T3-L1 , Adipócitos , Animais , Apigenina , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Camundongos , Transdução de SinaisRESUMO
In this study, it was evaluated the effect of freeze-dried powder of Capsicum annuum L. cv. DANGJO (DJ) on ameliorating hyperglycemia in type 2 diabetes rat model induced by high-fat diet (HFD) and streptozotocin (STZ). Oral administration of DJ significantly reduced non-fasting blood glucose (NFBG) and insulin levels, as well as glycated hemoglobin (HbA1c) level, a representative marker for diabetes, in HFD/STZ treated rats whereas the administration of green hot pepper (GHP) and green sweet pepper (GSP) did not show the significant effect. Quercitrin was quantified (40.97 mg/100 g of DJ) by HPLC, and administration of the same amount of quercitrin with DJ exerted the significant reduction of blood glucose level, strongly supporting that quercitrin is the key component in ameliorating the hyperglycemia of DJ in HFD/STZ treated rats. These results suggest that DJ can be considered as a potent functional food in preventing hyperglycemia in type 2 diabetes mellitus.
RESUMO
CD44 is a multifunctional transmembrane protein involved in cell proliferation, angiogenesis, invasion, and metastasis. CD44 is identified as a cancer stem cell marker, and the CD44-positive breast cancer cells are enriched in residual breast cancer cell populations after conventional therapies, suggesting that CD44 may be an important target for cancer prevention and therapy. Therefore, we investigated for the inhibitory effect of a novel Gemini vitamin D analog, 1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-cholecalciferol (BXL0124), on mammary tumor growth and CD44 expression in MCF10DCIS.com human breast cancer in vitro and in vivo. MCF10DCIS.com cells were injected into mammary fat pads in immunodeficient mice, and BXL0124 was then administered intraperitoneally (0.1 µg/kg body weight) or orally (0.03 or 0.1 µg/kg body weight) 6 days a week for 5 weeks. At necropsy, mammary tumors and blood were collected for evaluating tumor growth, CD44 expression, and serum calcium level. BXL0124 suppressed mammary tumor growth and markedly decreased the expression of CD44 protein in MCF10DCIS xenograft tumors without causing hypercalcemic toxicity. BXL0124 also inhibited the expression of CD44 protein and mRNA as well as the transcriptional activity of the CD44 promoter in cultured MCF10DCIS.com cells. The repression of CD44 expression induced by BXL0124 was blocked by siRNA vitamin D receptor (VDR), indicating that the regulation of CD44 expression by BXL0124 is a VDR-dependent event. The novel Gemini vitamin D analog, BXL0124, represses CD44 expression in MCF10DCIS.com cells in vitro and in xenograft tumors, suggesting an inhibitory role of a Gemini vitamin D derivative on breast cancer stem cells.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Calcitriol/análogos & derivados , Receptores de Hialuronatos/biossíntese , Animais , Western Blotting , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Calcitriol/farmacologia , Cálcio/sangue , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/análise , Neoplasias Mamárias Experimentais/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Transplante de Neoplasias , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacosRESUMO
Hutchinson-Gilford progeria syndrome (HGPS) is a rare condition originally described by Hutchinson in 1886. Death result from cardiac complications in the majority of cases and usually occurs at average age of thirteen years. A 4-yr old boy had typical clinical findings such as short stature, craniofacial disproportion, alopecia, prominent scalp veins and sclerodermatous skin. This abnormal appearance began at age of 1 yr. On serological and hormonal evaluation, all values are within normal range. He was neurologically intact with motor and mental development. An echocardiogram showed calcification of aortic and mitral valves. Hypertrophy of internal layer at internal carotid artery suggesting atherosclerosis was found by carotid doppler sonography. He is on low dose aspirin to prevent thromboembolic episodes and on regular follow up. Gene study showed typical G608G (GGC- > GGT) point mutation at exon 11 in LMNA gene. This is a rare case of Hutchinson-Gilford progeria syndrome confirmed by genetic analysis in Korea.
Assuntos
Lamina Tipo A/genética , Progéria/genética , Pré-Escolar , Humanos , Masculino , Mutação Puntual , Progéria/diagnóstico , Prognóstico , República da CoreiaRESUMO
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
Assuntos
Adipogenia , Praguicidas , Células 3T3-L1 , Adipócitos , Animais , Estrogênios , Camundongos , Organização para a Cooperação e Desenvolvimento Econômico , Praguicidas/toxicidade , Receptores de Estrogênio/genéticaRESUMO
Inflammatory cytokine tumor necrosis factor-α (TNFα) has been demonstrated to accelerate the progression and metastasis of various carcinomas. In this study, we investigated the effect of amentoflavone on inhibiting the migration and invasion of TNFα-induced breast cancer cells. Results showed that amentoflavone significantly blocked the cellular migration and invasion of MCF10DCIS.com and MDA-MB-231 cells at a concentration of 10 µM but did not affect the cell viability. The mRNA and protein levels of matrix metalloproteinase (MMP)-9, significantly activated by TNFα, were reversed by amentoflavone treatment in a dose-dependent manner in MCF10DCIS.com cells. Congruent with the protein level, the activity of MMP-9 was significantly suppressed by amentoflavone treatment. Additionally, we found that amentoflavone dampened Gli1-dependent noncanonical hedgehog signaling, which is a key factor in the regulation of migration and invasion in TNFα-induced human breast cancer cells. Further study elucidated that TNFα enhanced Gli1 through the activation of the AKT/mTOR/S6K1 cascade, whereas it receded after amentoflavone treatment in human breast cancer cells. In summary, amentoflavone abrogated Gli1 activation in TNFα-induced mammary tumor cells, resulting in a decrease of invasiveness in human breast cancer cells via mediating AKT/mTOR/S6K1 signaling. Amentoflavone should be considered as a potent food ingredient for the retardation of mammary tumorigenesis.