Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(18): 10026-10040, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650645

RESUMO

Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.

2.
Microb Cell Fact ; 23(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172811

RESUMO

BACKGROUND: Clostridium sp. AWRP (AWRP) is a novel acetogenic bacterium isolated under high partial pressure of carbon monoxide (CO) and can be one of promising candidates for alcohol production from carbon oxides. Compared to model strains such as C. ljungdahlii and C. autoethanogenum, however, genetic manipulation of AWRP has not been established, preventing studies on its physiological characteristics and metabolic engineering. RESULTS: We were able to demonstrate the genetic domestication of AWRP, including transformation of shuttle plasmids, promoter characterization, and genome editing. From the conjugation experiment with E. coli S17-1, among the four replicons tested (pCB102, pAMß1, pIP404, and pIM13), three replicated in AWRP but pCB102 was the only one that could be transferred by electroporation. DNA methylation in E. coli significantly influenced transformation efficiencies in AWRP: the highest transformation efficiencies (102-103 CFU/µg) were achieved with unmethylated plasmid DNA. Determination of strengths of several clostridial promoters enabled the establishment of a CRISPR/Cas12a genome editing system based on Acidaminococcus sp. BV3L6 cas12a gene; interestingly, the commonly used CRISPR/Cas9 system did not work in AWRP, although it expressed the weakest promoter (C. acetobutylicum Pptb) tested. This system was successfully employed for the single gene deletion (xylB and pyrE) and double deletion of two prophage gene clusters. CONCLUSIONS: The presented genome editing system allowed us to achieve several genome manipulations, including double deletion of two large prophage groups. The genetic toolbox developed in this study will offer a chance for deeper studies on Clostridium sp. AWRP for syngas fermentation and carbon dioxide (CO2) sequestration.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Edição de Genes , Clostridium/genética , Clostridium/metabolismo , Engenharia Metabólica
3.
Appl Environ Microbiol ; 89(12): e0147423, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966269

RESUMO

IMPORTANCE: The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.


Assuntos
Hidrogenase , Thermococcus , Thermococcus/genética , Hidrogenase/genética , Formiato Desidrogenases/genética , Dióxido de Carbono , NADP
4.
Artigo em Inglês | MEDLINE | ID: mdl-37022754

RESUMO

A strictly anaerobic hyperthermophilic archaeon, designated strain IOH2T, was isolated from a deep-sea hydrothermal vent (Onnuri vent field) area on the Central Indian Ocean Ridge. Strain IOH2T showed high 16S rRNA gene sequence similarity to Thermococcus sibiricus MM 739T (99.42 %), Thermococcus alcaliphilus DSM 10322T (99.28 %), Thermococcus aegaeus P5T (99.21 %), Thermococcus litoralis DSM 5473T (99.13 %), 'Thermococcus bergensis' T7324T (99.13 %), Thermococcus aggregans TYT (98.92 %) and Thermococcus prieurii Bio-pl-0405IT2T (98.01 %), with all other strains showing lower than 98 % similarity. The average nucleotide identity and in silico DNA-DNA hybridization values were highest between strain IOH2T and T. sibiricus MM 739T (79.33 and 15.00 %, respectively); these values are much lower than the species delineation cut-offs. Cells of strain IOH2T were coccoid, 1.0-1.2 µm in diameter and had no flagella. Growth ranges were 60-85 °C (optimum at 80 °C), pH 4.5-8.5 (optimum at pH 6.3) and 2.0-6.0 % (optimum at 4.0 %) NaCl. Growth of strain IOH2T was enhanced by starch, glucose, maltodextrin and pyruvate as a carbon source, and elemental sulphur as an electron acceptor. Through genome analysis of strain IOH2T, arginine biosynthesis related genes were predicted, and growth of strain IOH2T without arginine was confirmed. The genome of strain IOH2T was assembled as a circular chromosome of 1 946 249 bp and predicted 2096 genes. The DNA G+C content was 39.44 mol%. Based on the results of physiological and phylogenetic analyses, Thermococcus argininiproducens sp. nov. is proposed with type strain IOH2T (=MCCC 4K00089T=KCTC 25190T).


Assuntos
Thermococcus , Thermococcus/genética , Água do Mar , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Oceano Índico , DNA Bacteriano/genética , Ácidos Graxos/química , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
5.
Sensors (Basel) ; 22(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271202

RESUMO

We report a breath hydrogen analyzer based on Pd-coated SnO2 nanorods (Pd-SnO2 NRs) sensor integrated into a miniaturized gas chromatography (GC) column. The device can measure a wide range of hydrogen (1-100 ppm), within 100 s, using a small volume of human breath (1 mL) without pre-concentration. Especially, the mini-GC integrated with Pd-SnO2 NRs can detect 1 ppm of H2, as a lower detection limit, at a low operating temperature of 152 °C. Furthermore, when the breath hydrogen analyzer was exposed to a mixture of interfering gases, such as carbon dioxide, nitrogen, methane, and acetone, it was found to be capable of selectively detecting only H2. We found that the Pd-SnO2 NRs were superior to other semiconducting metal oxides that lack selectivity in H2 detection. Our study reveals that the Pd-SnO2 NRs integrated into the mini-GC device can be utilized in breath hydrogen analyzers to rapidly and accurately detect hydrogen due to its high selectivity and sensitivity.


Assuntos
Hidrogênio , Nanotubos , Acetona/análise , Testes Respiratórios/métodos , Gases/análise , Humanos , Hidrogênio/química
6.
J Exp Bot ; 72(12): 4254-4268, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33831183

RESUMO

We previously identified a cluster of yield-related quantitative trait loci (QTLs) including plant height in CR4379, a near-isogenic line from a cross between Oryza sativa spp. japonica cultivar 'Hwaseong' and the wild relative Oryza rufipogon. Map-based cloning and transgenic approaches revealed that APX9, which encodes an l-ascorbate peroxidase 4, is associated with this cluster. A 3 bp InDel was observed leading to the addition of a valine in Hwaseong compared with O. rufipogon. APX9-overexpressing transgenic plants in the Hwaseong background were taller than Hwaseong. Consistent with these results, APX9 T-DNA insertion mutants in the japonica cultivar Dongjin were shorter. These results confirm that APX9 is the causal gene for the QTL cluster. Sequence analysis of APX9 from 303 rice accessions revealed that the 3 bp InDel clearly differentiates japonica (APX9HS) and O. rufipogon (APX9OR) alleles. indica accessions shared both alleles, suggesting that APX9HS was introgressed into indica followed by crossing. The finding that O. rufipogon accessions with different origins carry APX9OR suggests that the 3 bp insertion was specifically selected in japonica during its domestication. Our findings demonstrate that APX9 acts as a major regulator of plant development by controlling a valuable suite of agronomically important traits in rice.


Assuntos
Oryza , Locos de Características Quantitativas , Ascorbato Peroxidases , Cruzamentos Genéticos , Oryza/genética , Fenótipo , Locos de Características Quantitativas/genética
7.
Inflammopharmacology ; 29(5): 1475-1486, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468900

RESUMO

Novel treatment strategies are urgently required for osteoarthritis (OA). Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide with analgesic and anti-inflammatory effects. We aimed to examine its effect on OA and elucidate the molecular mechanism of actions in monosodium iodoacetate (MIA)-induced OA Sprague-Dawley rats. The experimental animals were divided into normal control group (injected with saline + treated with phosphate-buffered saline (PBS), NOR), control group (injected with MIA + treated with PBS, CON), 50 or 100 mg/kg body weight (BW)/day PEA-treated group (injected with MIA + treated with 50 or 100 mg of PEA/kg BW/day, PEA50 or PEA100), and positive control group (injected with MIA + treated with 6 mg of diclofenac/kg BW/day, DiC). The changes in blood parameters, body parameters, gene expression of inflammatory mediators and cytokines, knee thickness, and joint tissue were observed. Oral administration of PEA had no adverse effects on the BW, liver, or kidneys. PEA reduced knee joint swelling and cartilage degradation in MIA-induced OA rats. The serum levels of leukotriene B4, nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and prostaglandin E2 considerably reduced in the PEA100 group compared with those in the CON group. In the synovia of knee joints, the mRNA expression of iNOS, 5-Lox, Cox-2, Il-1ß, Tnf-α, and Mmp-2, -3, -9, and -13 apparently increased with MIA administration. Meanwhile, Timp-1 mRNA expression apparently decreased in the CON group but increased to the normal level with PEA treatment. Thus, PEA can be an effective therapeutic agent for OA.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Etanolaminas/farmacologia , Osteoartrite/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Administração Oral , Amidas/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Relação Dose-Resposta a Droga , Etanolaminas/administração & dosagem , Ácido Iodoacético , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Ácidos Palmíticos/administração & dosagem , Ratos , Ratos Sprague-Dawley
8.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924613

RESUMO

To date, NAD(P)H, ferredoxin, and coenzyme F420 have been identified as electron donors for thioredoxin reductase (TrxR). In this study, we present a novel electron source for TrxR. In the hyperthermophilic archaeon Thermococcus onnurineus NA1, the frhAGB-encoded hydrogenase, a homolog of the F420-reducing hydrogenase of methanogens, was demonstrated to interact with TrxR in coimmunoprecipitation experiments and in vitro pulldown assays. Electrons derived from H2 oxidation by the frhAGB-encoded hydrogenase were transferred to TrxR and reduced Pdo, a redox partner of TrxR. Interaction and electron transfer were observed between TrxR and the heterodimeric hydrogenase complex (FrhAG) as well as the heterotrimeric complex (FrhAGB). Hydrogen-dependent reduction of TrxR was 7-fold less efficient than when NADPH was the electron donor. This study not only presents a different type of electron donor for TrxR but also reveals new functionality of the frhAGB-encoded hydrogenase utilizing a protein as an electron acceptor.IMPORTANCE This study has importance in that TrxR can use H2 as an electron donor with the aid of the frhAGB-encoded hydrogenase as well as NAD(P)H in T. onnurineus NA1. Further studies are needed to explore the physiological significance of this protein. This study also has importance as a significant step toward understanding the functionality of the frhAGB-encoded hydrogenase in a nonmethanogen; the hydrogenase can transfer electrons derived from oxidation of H2 to a protein target by direct contact without the involvement of an electron carrier, which is distinct from the mechanism of its homologs, F420-reducing hydrogenases of methanogens.


Assuntos
Proteínas Arqueais/metabolismo , Elétrons , Hidrogenase/metabolismo , Thermococcus/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Transporte de Elétrons , Oxirredução
9.
J Sleep Res ; 29(6): e12976, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31943457

RESUMO

The cFos immunostaining allowed the identification of multiple populations of neurons involved in the generation of paradoxical sleep. We adopted the transgenic (targeted recombination in active populations) mouse model, which following injection of tamoxifen, allows expression of Cre-dependent reporter constructs (i.e., mCherry) in neurons expressing cFos during waking or paradoxical sleep hypersomnia following automatic paradoxical sleep deprivation. Three groups of mice were subjected to two periods of waking, one period of waking and one of paradoxical sleep hypersomnia, or two periods of paradoxical sleep hypersomnia. A high percentage of double-labelled neurons was observed in the lateral hypothalamic area and zona incerta of two periods of waking and two periods of paradoxical sleep hypersomnia in mice, but not in those of one period of waking and one of paradoxical sleep hypersomnia in animals. Melanin-concentrating hormone neurons in the lateral hypothalamic area and Lhx6+ cells in the zona incerta constituted 5.7 ± 1.5% and 8.8 ± 2.3% of all mCherry+ cells and 20.6 ± 4.8% and 24.6 ± 5.9% of all cFos+ neurons in two periods of paradoxical sleep hypersomnia in animals. In addition, melanin-concentrating hormone cells as well as Lhx6+ neurons rarely expressed mCherry (or cFos) in the waking condition, in contrast to orexin neurons, which constituted approximately 30% of mCherry+ and cFos+ neurons. Our results validate the TRAP methodology and open the way to use it for identifying the neurons activated during waking and paradoxical sleep hypersomnia. Furthermore, they indicate for the first time that Lhx6+ neurons in the zona incerta, like melanin-concentrating hormone cells in the lateral hypothalamic area, are activated during paradoxical sleep hypersomnia but not during waking. These results indicate that Lhx6+ neurons might play a role in the control of paradoxical sleep, like the melanin-concentrating hormone cells.


Assuntos
Distúrbios do Sono por Sonolência Excessiva/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Modelos Genéticos , Privação do Sono/metabolismo
10.
Pestic Biochem Physiol ; 164: 221-227, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284130

RESUMO

τ-Fluvalinate (fluvalinate) is a highly selective pyrethroid insecticide compound used for controlling ectoparasitic mites that cause major damages in honey bee colonies. Although honey bees have resistance and low toxicity to this xenobiotic chemical, little is known about the effects of this chemical on sensory modulation and behaviors in honey bees. Here we addressed the effect on olfactory cognition at the behavioral, molecular, and neurophysiological levels. First, we found that topical application of fluvalinate to honeybee abdomen elicited somewhat severe toxicity to honey bees. Furthermore, honeybees treated with sublethal doses of fluvalinate showed a significant decrease in olfactory responses. At the molecular level, there was no change in gene expression levels of odorant receptor co-receptor (Orco), which is important for electrical conductivity induced by odorant binding in insects. Rather, small neuropeptide F (sNPF) signaling pathway was involved in olfactory fluctuation after treatment of fluvalinate. This indicates that olfactory deficits by abdominal contact of fluvalinate may stem from various internal molecular pathways in honey bees.


Assuntos
Piretrinas , Abdome , Animais , Abelhas , Nitrilas , Xenobióticos
11.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131496

RESUMO

Leaf senescence is the final stage of plant development. Many internal and external factors affect the senescence process in rice (Oryza sativa L.). In this study, we identified qCC2, a major quantitative trait locus (QTL) for chlorophyll content using a population derived from an interspecific cross between O. sativa (cv. Hwaseong) and Oryza grandiglumis. The O. grandiglumis allele at qCC2 increased chlorophyll content and delayed senescence. GW2 encoding E3 ubiquitin ligase in the qCC2 region was selected as a candidate for qCC2. To determine if GW2 is allelic to qCC2, a gw2-knockout mutant (gw2-ko) was examined using a dark-induced senescence assay. gw2-ko showed delayed leaf senescence in the dark with down-regulated expression of senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs). The association of the GW2 genotype with the delayed senescence phenotype was confirmed in an F2 population. RNA-seq analysis was conducted to investigate 30-day-old leaf transcriptome dynamics in Hwaseong and a backcross inbred line-CR2002-under dark treatment. This resulted in the identification of genes involved in phytohormone signaling and associated with senescence. These results suggested that transcriptional regulation was associated with delayed senescence in CR2002, and RING-type E3 ubiquitin ligase GW2 was a positive regulator of leaf senescence in rice.


Assuntos
Clorofila/metabolismo , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Clorofila/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Locos de Características Quantitativas , Luz Solar , Transcriptoma , Ubiquitina-Proteína Ligases/genética
12.
Appl Microbiol Biotechnol ; 103(8): 3477-3485, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30887173

RESUMO

The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic Pyrococcus furiosus, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from Thermococcus onnurineus NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (alsS) from Pyrococcus sp. NA2 and alcohol dehydrogenase (adh) from T. guaymacensis, were introduced and expressed in T. onnurineus NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of T. onnurineus NA1 as a platform strain for 2,3-BDO production at high temperatures.


Assuntos
Vias Biossintéticas/genética , Butileno Glicóis/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Anaerobiose , Proteínas Arqueais/genética , Monóxido de Carbono/química , Temperatura Alta , Engenharia Metabólica
13.
Sensors (Basel) ; 19(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443298

RESUMO

N-containing gaseous compounds, such as trimethylamine (TMA), triethylamine (TEA), ammonia (NH3), nitrogen monoxide (NO), and nitrogen dioxide (NO2) exude irritating odors and are harmful to the human respiratory system at high concentrations. In this study, we investigated the sensing responses of five sensor materials-Al-doped ZnO (AZO) nanoparticles (NPs), Pt-loaded AZO NPs, a Pt-loaded WO3 (Pt-WO3) thin film, an Au-loaded WO3 (Au-WO3) thin film, and N-doped graphene-to the five aforementioned gases at a concentration of 10 parts per million (ppm). The ZnO- and WO3-based materials exhibited n-type semiconducting behavior, and their responses to tertiary amines were significantly higher than those of nitric oxides. The N-doped graphene exhibited p-type semiconducting behavior and responded only to nitric oxides. The Au- and Pt-WO3 thin films exhibited extremely high responses of approximately 100,000 for 10 ppm of triethylamine (TEA) and approximately -2700 for 10 ppm of NO2, respectively. These sensing responses are superior to those of previously reported sensors based on semiconducting metal oxides. On the basis of the sensing response results, we drew radar plots, which indicated that selective pattern recognition could be achieved by using the five sensing materials together. Thus, we demonstrated the possibility to distinguish each type of gas by applying the patterns to recognition techniques.

14.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875988

RESUMO

The genus Angelica (Apiaceae) comprises valuable herbal medicines. In this study, we determined the complete chloroplast (CP) genome sequence of A. polymorpha and compared it with that of Ligusticum officinale (GenBank accession no. NC039760). The CP genomes of A. polymorpha and L. officinale were 148,430 and 147,127 bp in length, respectively, with 37.6% GC content. Both CP genomes harbored 113 unique functional genes, including 79 protein-coding, four rRNA, and 30 tRNA genes. Comparative analysis of the two CP genomes revealed conserved genome structure, gene content, and gene order. However, highly variable regions, sufficient to distinguish between A. polymorpha and L. officinale, were identified in hypothetical chloroplast open reading frame1 (ycf1) and ycf2 genic regions. Nucleotide diversity (Pi) analysis indicated that ycf4⁻chloroplast envelope membrane protein (cemA) intergenic region was highly variable between the two species. Phylogenetic analysis revealed that A. polymorpha and L. officinale were well clustered at family Apiaceae. The ycf4-cemA intergenic region in A. polymorpha carried a 418 bp deletion compared with L. officinale. This region was used for the development of a novel indel marker, LYCE, which successfully discriminated between A. polymorpha and L. officinale accessions. Our results provide important taxonomic and phylogenetic information on herbal medicines and facilitate their authentication using the indel marker.


Assuntos
Angelica/classificação , Genoma de Cloroplastos , Ligusticum/classificação , Sequenciamento Completo do Genoma/métodos , Angelica/genética , Composição de Bases , Cloroplastos/genética , DNA Intergênico , Evolução Molecular , Ordem dos Genes , Tamanho do Genoma , Mutação INDEL , Ligusticum/genética , Fases de Leitura Aberta , Filogenia
15.
Extremophiles ; 21(3): 491-498, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28251348

RESUMO

Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.


Assuntos
Proteínas Arqueais/metabolismo , Thermococcus/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Oxirredução , Ligação Proteica , Homologia de Sequência , Enxofre/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética
16.
Appl Microbiol Biotechnol ; 101(12): 5081-5088, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28341885

RESUMO

The F420-reducing hydrogenase of methanogens functions in methanogenesis by providing reduced coenzyme F420 (F420H2) as an electron donor. In non-methanogens, however, their physiological function has not been identified yet. In this study, we constructed an ΔfrhA mutant, whose frhA gene encoding the hydrogenase α subunit was deleted, in the non-methanogenic Thermococcus onnurineus NA1 as a model organism. There was no significant difference in the formate-dependent growth between the mutant and the wild-type strains. Interestingly, the mutation in the frhA gene affected the expression of genes involved in various cellular functions such as H2 oxidation, chemotactic signal transduction, and carbon monoxide (CO) metabolism. Among these genes, the CO oxidation gene cluster, enabling CO-dependent growth and H2 production, showed a 2.8- to 7.0-fold upregulation by microarray-based whole transcriptome expression profiling. The levels of proteins produced by this gene cluster were also significantly increased not only under the formate condition but also under the CO condition. In a controlled bioreactor, where 100% CO was continuously fed, the ΔfrhA mutant exhibited significant increases in cell growth (2.8-fold) and H2 production (3.4-fold). These findings strongly imply that this hydrogenase is functional in non-methanogens and is related to various cellular metabolic processes through an unidentified mechanism. An understanding of the mechanism by which the frhA gene deletion affected the expression of other genes will provide insights that can be applied to the development of strategies for the enhancement of H2 production using CO as a substrate.


Assuntos
Deleção de Genes , Hidrogênio/metabolismo , Hidrogenase/genética , Thermococcus/genética , Reatores Biológicos , Monóxido de Carbono/metabolismo , Perfilação da Expressão Gênica/métodos , Hidrogenase/metabolismo , Família Multigênica , Mutação , Oxirredução , Thermococcus/metabolismo
17.
Nature ; 467(7313): 352-5, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20844539

RESUMO

Although a common reaction in anaerobic environments, the conversion of formate and water to bicarbonate and H(2) (with a change in Gibbs free energy of ΔG° = +1.3 kJ mol(-1)) has not been considered energetic enough to support growth of microorganisms. Recently, experimental evidence for growth on formate was reported for syntrophic communities of Moorella sp. strain AMP and a hydrogen-consuming Methanothermobacter species and of Desulfovibrio sp. strain G11 and Methanobrevibacter arboriphilus strain AZ. The basis of the sustainable growth of the formate-users is explained by H(2) consumption by the methanogens, which lowers the H(2) partial pressure, thus making the pathway exergonic. However, it has not been shown that a single strain can grow on formate by catalysing its conversion to bicarbonate and H(2). Here we report that several hyperthermophilic archaea belonging to the Thermococcus genus are capable of formate-oxidizing, H(2)-producing growth. The actual ΔG values for the formate metabolism are calculated to range between -8 and -20 kJ mol(-1) under the physiological conditions where Thermococcus onnurineus strain NA1 are grown. Furthermore, we detected ATP synthesis in the presence of formate as a sole energy source. Gene expression profiling and disruption identified the gene cluster encoding formate hydrogen lyase, cation/proton antiporter and formate transporter, which were responsible for the growth of T. onnurineus NA1 on formate. This work shows formate-driven growth by a single microorganism with protons as the electron acceptor, and reports the biochemical basis of this ability.


Assuntos
Formiatos/metabolismo , Hidrogênio/metabolismo , Thermococcus/crescimento & desenvolvimento , Thermococcus/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/biossíntese , Anaerobiose , Biocatálise , Dióxido de Carbono/metabolismo , Elétrons , Formiato Desidrogenases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea/genética , Hidrogenase , Liases/metabolismo , Modelos Biológicos , Complexos Multienzimáticos , Família Multigênica/genética , Oxirredução , Pressão Parcial , Prótons , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Thermococcus/classificação , Thermococcus/genética , Água/metabolismo
18.
Biochem Biophys Res Commun ; 461(1): 122-7, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25858319

RESUMO

Proteins in the haloalkaloic acid dehalogenase (HAD) superfamily, which is one of the largest enzyme families, is generally composed of a catalytic core domain and a cap domain. Although proteins in this family show broad substrate specificities, the mechanisms of their substrate recognition are not well understood. In this study, we identified a new substrate binding motif of HAD proteins from structural and functional analyses, and propose that this motif might be crucial for interacting with hydrophobic rings of substrates. The crystal structure of TON_0338, one of the 17 putative HAD proteins identified in a hyperthermophilic archaeon, Thermococcus onnurineus NA1, was determined as an apo-form at 2.0 Å resolution. In addition, we determined the crystal structure TON_0338 in complex with Mg(2+) or N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at 1.7 Å resolution. Examination of the apo-form and CHES-bound structures revealed that CHES is sandwiched between Trp58 and Trp61, suggesting that this Trp sandwich might function as a substrate recognition motif. In the phosphatase assay, TON_0338 was shown to have high activity for flavin mononucleotide (FMN), and the docking analysis suggested that the flavin of FMN may interact with Trp58 and Trp61 in a way similar to that observed in the crystal structure. Moreover, the replacement of these tryptophan residues significantly reduced the phosphatase activity for FMN. Our results suggest that WxxW may function as a substrate binding motif in HAD proteins, and expand the diversity of their substrate recognition mode.


Assuntos
Hidrolases/química , Hidrolases/ultraestrutura , Modelos Químicos , Simulação de Acoplamento Molecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/ultraestrutura , Thermococcus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Estabilidade Enzimática , Hidrolases/isolamento & purificação , Conformação Molecular , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/isolamento & purificação , Ligação Proteica , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato , Thermococcus/classificação
20.
Appl Environ Microbiol ; 81(5): 1708-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25548050

RESUMO

Genome analysis revealed the existence of a putative transcriptional regulatory system governing CO metabolism in Thermococcus onnurineus NA1, a carboxydotrophic hydrogenogenic archaeon. The regulatory system is composed of CorQ with a 4-vinyl reductase domain and CorR with a DNA-binding domain of the LysR-type transcriptional regulator family in close proximity to the CO dehydrogenase (CODH) gene cluster. Homologous genes of the CorQR pair were also found in the genomes of Thermococcus species and "Candidatus Korarchaeum cryptofilum" OPF8. In-frame deletion of either corQ or corR caused a severe impairment in CO-dependent growth and H2 production. When corQ and corR deletion mutants were complemented by introducing the corQR genes under the control of a strong promoter, the mRNA and protein levels of the CODH gene were significantly increased in a ΔCorR strain complemented with integrated corQR (ΔCorR/corQR(↑)) compared with those in the wild-type strain. In addition, the ΔCorR/corQR(↑) strain exhibited a much higher H2 production rate (5.8-fold) than the wild-type strain in a bioreactor culture. The H2 production rate (191.9 mmol liter(-1) h(-1)) and the specific H2 production rate (249.6 mmol g(-1) h(-1)) of this strain were extremely high compared with those of CO-dependent H2-producing prokaryotes reported so far. These results suggest that the corQR genes encode a positive regulatory protein pair for the expression of a CODH gene cluster. The study also illustrates that manipulation of the transcriptional regulatory system can improve biological H2 production.


Assuntos
Monóxido de Carbono/metabolismo , Regulação da Expressão Gênica em Archaea/efeitos dos fármacos , Hidrogênio/metabolismo , Thermococcus/efeitos dos fármacos , Thermococcus/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Família Multigênica , Análise de Sequência de DNA , Thermococcus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa