Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 99(8): 1157-1172, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30700846

RESUMO

Doxorubicin is a widely used DNA damage-inducing anti-cancer drug. However, its use is limited by its dose-dependent side effects, such as cardiac toxicity. Cholesterol-lowering statin drugs increase the efficacy of some anti-cancer drugs. Cholesterol is important for cell growth and a critical component of lipid rafts, which are plasma membrane microdomains important for cell signaling. 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMG-CR) is a critical enzyme in cholesterol synthesis. Here, we show that doxorubicin downregulated HMG-CR protein levels and thus reduced levels of cholesterol and lipid rafts. Cholesterol addition attenuated doxorubicin-induced cell death, and cholesterol depletion enhanced it. Reduction of HMG-CR activity by simvastatin, a statin that acts as an HMG-CR inhibitor, or by siRNA-mediated HMG-CR knockdown enhanced doxorubicin cytotoxicity. Doxorubicin-induced HMG-CR downregulation was associated with inactivation of the EGFR-Src pathway. Furthermore, a high-cholesterol-diet attenuated the anti-cancer activity of doxorubicin in a tumor xenograft mouse model. In a multivulva model of Caenorhabditis elegans expressing an active-EGFR mutant, doxorubicin decreased hyperplasia more efficiently in the absence than in the presence of cholesterol. These data indicate that EGFR/Src/HMG-CR is a new pathway mediating doxorubicin-induced cell death and that cholesterol control could be combined with doxorubicin treatment to enhance efficacy and thus reduce side effects.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Metabolomics ; 15(10): 137, 2019 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-31587111

RESUMO

BACKGROUND: Nicotinamide (NAM) is a form of vitamin B3 that, when administered at near-gram doses, has been shown or suggested to be therapeutically effective against many diseases and conditions. The target conditions are incredibly diverse ranging from skin disorders such as bullous pemphigoid to schizophrenia and depression and even AIDS. Similar diversity is expected for the underlying mechanisms. In a large portion of the conditions, NAM conversion to nicotinamide adenine dinucleotide (NAD+) may be a major factor in its efficacy. The augmentation of cellular NAD+ level not only modulates mitochondrial production of ATP and superoxide, but also activates many enzymes. Activated sirtuin proteins, a family of NAD+-dependent deacetylases, play important roles in many of NAM's effects such as an increase in mitochondrial quality and cell viability countering neuronal damages and metabolic diseases. Meanwhile, certain observed effects are mediated by NAM itself. However, our understanding on the mechanisms of NAM's effects is limited to those involving certain key proteins and may even be inaccurate in some proposed cases. AIM OF REVIEW: This review details the conditions that NAM has been shown to or is expected to effectively treat in humans and animals and evaluates the proposed underlying molecular mechanisms, with the intention of promoting wider, safe therapeutic application of NAM. KEY SCIENTIFIC CONCEPTS OF REVIEW: NAM, by itself or through altering metabolic balance of NAD+ and tryptophan, modulates mitochondrial function and activities of many molecules and thereby positively affects cell viability and metabolic functions. And, NAM administration appears to be quite safe with limited possibility of side effects which are related to NAM's metabolites.


Assuntos
Neoplasias/tratamento farmacológico , Niacinamida/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Niacinamida/administração & dosagem , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Dermatopatias/patologia
3.
J Nanosci Nanotechnol ; 19(8): 4583-4589, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913752

RESUMO

Novel blue thermally activated delayed fluorescence (TADF) emitters, D1-DPS and D2-DPS, were designed and synthesized. Diphenyl sulfone (DPS) group functioned as a common acceptor, and it combined with each of two different spiro-acridine groups, D1 and D2. The calculated energy differences (ΔEST) of the singlet and triplet excited states of D1-DPS (0.062 eV) and D2-DPS (0.128 eV) had sufficiently small ΔEST values, which is favorable in the thermally activated reverse intersystem crossing (RISC) process from the T1 state to the S1 state. A device doped 10 wt% of D2-DPS with ADN host material, obtained 5.05% of external quantum efficiency with deep-blue emission having CIExy coordinates of (0.152, 0.065). The results showed that these molecules are promising host-free TADF deep-blue emitters by inhibiting concentration quenching.

4.
Nature ; 492(7428): 199-204, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23201684

RESUMO

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Assuntos
Necrose/enzimologia , Sirtuína 2/genética , Sirtuína 2/metabolismo , Acetilação , Animais , Linhagem Celular , Feminino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Masculino , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
5.
J Nanosci Nanotechnol ; 18(10): 7207-7210, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954560

RESUMO

Photo-activator is a kind of additive that can improve the anchoring energy by attacking some of the bonds of polyimide (PI). Photo-activators were synthesized from the reaction of cyclohexanone oxime with three different anhydrides, respectively. Each activator generates different active radicals when irradiated. These fragmented and activated radicals are responsible for the liquid crystal (LC) alignment of PI film. The reactivity was confirmed through UV-Visible spectroscopy. All the three photo-activators had characteristic bimodal-shaped absorption peaks at 270∼280 nm. The photofragmentation reactions were completed within 1 min of UV irradiation, which implies that the activators are highly reactive to UV light. The short reaction time is very useful for liquid crystal display (LCD) factory applications. The photo-activator using crotonic anhydride (CAP) showed the highest surface anchoring energy, of 6.92 × 10-5 J/m2, compared to that of the other activators and that obtained by rubbing methods; (1.11 × 10-5 J/m2). This result was obtained due to resonance stabilization from the allyl radicals of CAP. The photo-activator using acetic anhydride (AAP) reached its maximum anchoring energy in less than 3 min of irradiation, which is the shortest optimum irradiation time. Considering the fact that this process does not require additional procedure and time, the photo-activators can be considered an innovate additive.

6.
Nature ; 459(7245): 387-392, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19404261

RESUMO

Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.


Assuntos
Dano ao DNA , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Quinase do Ponto de Checagem 2 , Dano ao DNA/genética , Feminino , Masculino , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Oxirredução/efeitos dos fármacos , Complexo Repressor Polycomb 1 , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Timo/citologia , Timo/efeitos dos fármacos
7.
BMB Rep ; 56(4): 246-251, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646438

RESUMO

Obesity increases the risk of mortality and morbidity because it results in hypertension, heart disease, and type 2 diabetes. Therefore, there is an urgent need for pharmacotherapeutic drugs to treat obesity. We performed a screening assay using natural products with anti-adipogenic properties in 3T3-L1 cells and determined that tschimganidine, a terpenoid from the Umbelliferae family, inhibited adipogenesis. To evaluate the anti-obesity effects of tschimganidine in vivo. Mice were fed either a normal chow diet (NFD) or a high-fat chow diet (HFD) with or without tschimganidine for 12 weeks. Treatment with tschimganidine decreased lipid accumulation and adipogenesis, accompanied by reduced expression of adipogenesis and lipid accumulation-related factors. Tschimganidine significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased that of AKT. Depletion of AMPK relieved the reduction in lipid accumulation resulting from tschimganidine treatment. Moreover, tschimganidine administration drastically reduced the weight and size of both gonadal white adipose tissue (WAT) and blood glucose levels in high-fat diet-induced obese mice. We suggest that tschimganidine is a potent antiobesity agent, which impedes adipogenesis and improves glucose homeostasis. Tschimganidine can then be evaluated for clinical application as a therapeutic agent. [BMB Reports 2023; 56(4): 246-251].


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipogenia , Fármacos Antiobesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Lipídeos , Células 3T3-L1 , Camundongos Endogâmicos C57BL
8.
Int J Biol Sci ; 19(16): 5245-5256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928271

RESUMO

Adipocytes are adipose tissues that supply energy to the body through lipids. The two main types of adipocytes comprise white adipocytes (WAT) that store energy, and brown adipocytes (BAT), which generate heat by burning stored fat (thermogenesis). Emerging evidence indicates that dysregulated adipocyte senescence may disrupt metabolic homeostasis, leading to various diseases and aging. Adipocytes undergo senescence via irreversible cell-cycle arrest in response to DNA damage, oxidative stress, telomere dysfunction, or adipocyte over-expansion upon chronic lipid accumulation. The amount of detectable BAT decreases with age. Activation of cell cycle regulators and dysregulation of adipogenesis-regulating factors may constitute a molecular mechanism that accelerates adipocyte senescence. To better understand the regulation of adipocyte senescence, the effects of post-translational modifications (PTMs), is essential for clarifying the activity and stability of these proteins. PTMs are covalent enzymatic protein modifications introduced following protein biosynthesis, such as phosphorylation, acetylation, ubiquitination, or glycosylation. Determining the contribution of PTMs to adipocyte senescence may identify new therapeutic targets for the regulation of adipocyte senescence. In this review, we discuss a conceptual case in which PTMs regulate adipocyte senescence and explain the mechanisms underlying protein regulation, which may lead to the development of effective strategies to combat metabolic diseases.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia/genética , Processamento de Proteína Pós-Traducional , Pontos de Checagem do Ciclo Celular
9.
Artigo em Inglês | MEDLINE | ID: mdl-35805420

RESUMO

This study observed the relationship between psychological benefits and the theory of planned behavior (TPB) in the context of an eco-friendly TV home shopping broadcasts. The theoretical framework was enhanced even further by examining the moderating role of personal norm on proenvironmental attitudes in the TV home shopping context. An online survey was conducted with Korean customers who had purchased home meal replacement (HMR) products from a TV home shopping broadcast within the past 6 months. A total of 305 samples were collected and used for the data analysis. All six of the hypotheses in the psychological benefits and TPB model were supported, meaning all constructs of psychological benefits, including warm glow, self-expressive benefits, and nature experiences, impacted TPB and behavioral intentions. Furthermore, personal norm had a moderating role in the relationship between warm glow and attitude. This research provides significant theoretical and managerial implications for the home shopping industry.


Assuntos
Comportamento do Consumidor , Intenção , Atitude , Teoria Psicológica , Inquéritos e Questionários
10.
Proc Natl Acad Sci U S A ; 105(9): 3374-9, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18296641

RESUMO

We demonstrate a role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. In particular, transient increased expression of Sirt1 is sufficient to stimulate basal rates of autophagy. In addition, we show that Sirt1(-/-) mouse embryonic fibroblasts do not fully activate autophagy under starved conditions. Reconstitution with wild-type but not a deacetylase-inactive mutant of Sirt1 restores autophagy in these cells. We further demonstrate that Sirt1 can form a molecular complex with several essential components of the autophagy machinery, including autophagy genes (Atg)5, Atg7, and Atg8. In vitro, Sirt1 can, in an NAD-dependent fashion, directly deacetylate these components. The absence of Sirt1 leads to markedly elevated acetylation of proteins known to be required for autophagy in both cultured cells and in embryonic and neonatal tissues. Finally, we show that Sirt1(-/-) mice partially resemble Atg5(-/-) mice, including the accumulation of damaged organelles, disruption of energy homeostasis, and early perinatal mortality. Furthermore, the in utero delivery of the metabolic substrate pyruvate extends the survival of Sirt1(-/-) pups. These results suggest that the Sirt1 deacetylase is an important in vivo regulator of autophagy and provide a link between sirtuin function and the overall cellular response to limited nutrients.


Assuntos
Autofagia , Sirtuínas/fisiologia , Acetilação , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , RNA Interferente Pequeno/farmacologia , Sirtuína 1 , Sirtuínas/genética , Inanição , Taxa de Sobrevida , Enzimas Ativadoras de Ubiquitina/genética
11.
Proc Natl Acad Sci U S A ; 105(38): 14447-52, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18794531

RESUMO

Here, we demonstrate a role for the mitochondrial NAD-dependent deacetylase Sirt3 in the maintenance of basal ATP levels and as a regulator of mitochondrial electron transport. We note that Sirt3(-/-) mouse embryonic fibroblasts have a reduction in basal ATP levels. Reconstitution with wild-type but not a deacetylase-deficient form of Sirt3 restored ATP levels in these cells. Furthermore in wild-type mice, the resting level of ATP correlates with organ-specific Sirt3 protein expression. Remarkably, in mice lacking Sirt3, basal levels of ATP in the heart, kidney, and liver were reduced >50%. We further demonstrate that mitochondrial protein acetylation is markedly elevated in Sirt3(-/-) tissues. In addition, in the absence of Sirt3, multiple components of Complex I of the electron transport chain demonstrate increased acetylation. Sirt3 can also physically interact with at least one of the known subunits of Complex I, the 39-kDa protein NDUFA9. Functional studies demonstrate that mitochondria from Sirt3(-/-) animals display a selective inhibition of Complex I activity. Furthermore, incubation of exogenous Sirt3 with mitochondria can augment Complex I activity. These results implicate protein acetylation as an important regulator of Complex I activity and demonstrate that Sirt3 functions in vivo to regulate and maintain basal ATP levels.


Assuntos
Metabolismo Energético , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Sirtuínas/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/citologia , Células HeLa , Humanos , Masculino , Camundongos , Proteínas Mitocondriais/genética , Sirtuína 3 , Sirtuínas/genética
12.
Diabetes ; 70(1): 182-195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046512

RESUMO

Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína Beclina-1/metabolismo , Resistência à Insulina/genética , Lipodistrofia/metabolismo , Doenças Metabólicas/metabolismo , Animais , Proteína Beclina-1/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Homeostase/genética , Inflamação/genética , Inflamação/metabolismo , Lipodistrofia/genética , Doenças Metabólicas/genética , Camundongos , Camundongos Knockout
13.
J Vet Med Sci ; 72(7): 853-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20179383

RESUMO

This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.


Assuntos
Encéfalo/anatomia & histologia , Cães/anatomia & histologia , Hipocampo/anatomia & histologia , Animais , Feminino , Hipocampo/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino
14.
Cancers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151067

RESUMO

Novel strategies for overcoming multidrug resistance are urgently needed to improve chemotherapy success and reduce side effects. Ginsenosides, the main active components of Panax ginseng, display anti-cancer properties and reverse drug resistance; however, the biological pathways mediating this phenomenon remain incompletely understood. This study aimed to evaluate the anti-cancer effects of ginsenoside Rp1, actinomycin D (ActD), and their co-administration in drug-resistant cells and murine xenograft model of colon cancer, and explore the underlying mechanisms. ActD increased expression and activity of SIRT1 in drug-resistant LS513 colon cancer, OVCAR8-DXR ovarian cancer, and A549-DXR lung cancer cells, but not in ActD-sensitive SW620 colon cancer cells. Inhibition of SIRT1, either pharmacologically, with EX527 or through siRNA, stimulated p53 acetylation and apoptosis in LS513 cells when treated with ActD. ActD also increased AKT activation in drug-resistant cells. Inhibition of AKT abrogated ActD-induced upregulation of SIRT1, suggesting that the AKT-SIRT1 pathway is important in ActD resistance. Rp1 inhibited both ActD-induced AKT activation and SIRT1 upregulation and re-sensitized the cells to ActD. Synergistic antitumor effects of Rp1 with ActD were also observed in vivo. Our results suggest that combining Rp1 with chemotherapeutic agents could circumvent drug resistance and improve treatment efficacy.

15.
Genes Genomics ; 42(9): 1011-1021, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32715384

RESUMO

BACKGROUND: Euphorbia jolkini, a medicinal herb that grows on the warm beaches in Japan and South Korea, is known to be used for traditional medicines to treat a variety of ailments, including bruises, stiffness, indigestion, toothache, and diabetes. OBJECTIVE: It is to analyze the whole transcriptome and identify the genes related to the phenylpropanoid biosynthesis in the medicinally important herb E jolkini. METHODS: Paired-end Illumina HiSeq™ 2500 sequencing technology was employed for cDNA library construction and Illumina sequencing. Public databases like TAIR (The Arabidopsis Information Resource), Swissprot and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for annotations of unigenes obtained. RESULTS: The transcriptome of E. jolkini generated 139,215 assembled transcripts with an average length of 868 bp and an N50 value of 1460 bp that were further clustered using CD-HIT into 93,801 unigenes with an average length of 847 bp (N50-1410 bp). Sixty-three percent of the coding sequences (CDS) were annotated from the longest open reading frame (ORF). A remarkable percentage of unigenes were annotated against various databases. The differentially expressed gene analysis revealed that the expression of genes related to the terpenoid backbone biosynthesis pathway was higher in the flowers, whereas that of genes related to the phenylpropanoid biosynthesis pathway was both up- and downregulated in flowers and leaves. A search of against the transcription factor domain found 1023 transcription factors (TFs) that were from 54 TF families. CONCLUSION: Assembled sequences of the E. jolkini transcriptome are made available for the first time in this study E. jolkini and lay a foundation for the investigation of secondary metabolite biosynthesis.


Assuntos
Euphorbia/genética , Transcriptoma/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Repetições de Microssatélites/genética , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/genética , Análise de Sequência de DNA/métodos , Fatores de Transcrição/genética
16.
Cell Death Differ ; 27(2): 482-496, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209362

RESUMO

Both the stress-response protein, SIRT1, and the cell cycle checkpoint kinase, CHK2, play critical roles in aging and cancer via the modulation of cellular homeostasis and the maintenance of genomic integrity. However, the underlying mechanism linking the two pathways remains elusive. Here, we show that SIRT1 functions as a modifier of CHK2 in cell cycle control. Specifically, SIRT1 interacts with CHK2 and deacetylates it at lysine 520 residue, which suppresses CHK2 phosphorylation, dimerization, and thus activation. SIRT1 depletion induces CHK2 hyperactivation-mediated cell cycle arrest and subsequent cell death. In vivo, genetic deletion of Chk2 rescues the neonatal lethality of Sirt1-/- mice, consistent with the role of SIRT1 in preventing CHK2 hyperactivation. Together, these results suggest that CHK2 mediates the function of SIRT1 in cell cycle progression, and may provide new insights into modulating cellular homeostasis and maintaining genomic integrity in the prevention of aging and cancer.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , Sirtuína 1/metabolismo , Acetilação , Animais , Ciclo Celular , Células Cultivadas , Quinase do Ponto de Checagem 2/deficiência , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Sirtuína 1/deficiência
17.
Exp Mol Med ; 51(9): 1-11, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492861

RESUMO

Accumulating evidence has indicated that sirtuins are key components of diverse physiological processes, including metabolism and aging. Sirtuins confer protection from a wide array of metabolic and age-related diseases, such as cancer, cardiovascular and neurodegenerative diseases. Recent studies have also suggested that sirtuins regulate autophagy, a protective cellular process for homeostatic maintenance in response to environmental stresses. Here, we describe various biological and pathophysiological processes regulated by sirtuin-mediated autophagy, focusing on cancer, heart, and liver diseases, as well as stem cell biology. This review also emphasizes key molecular mechanisms by which sirtuins regulate autophagy. Finally, we discuss novel insights into how new therapeutics targeting sirtuin and autophagy may potentially lead to effective strategies to combat aging and aging-related diseases.


Assuntos
Envelhecimento/genética , Autofagia/genética , Sirtuínas/genética , Células-Tronco/metabolismo , Envelhecimento/patologia , Humanos , Células-Tronco/patologia
18.
Exp Mol Med ; 51(3): 1-9, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902968

RESUMO

Growing evidence indicates that metabolic signaling pathways are interconnected to DNA damage response (DDR). However, factors that link metabolism to DDR remain incompletely understood. SIRT1, an NAD+-dependent deacetylase that regulates metabolism and aging, has been shown to protect cells from DDR. Here, we demonstrate that SIRT1 protects cells from oxidative stress-dependent DDR by binding and deacetylating checkpoint kinase 2 (CHK2). We first showed that essential proteins in DDR were hyperacetylated in Sirt1-deficient cells and that among them, the level of acetylated CHK2 was highly increased. We found that Sirt1 formed molecular complexes with CHK2, BRCA1/BRCA2-associated helicase 1 (BACH1), tumor suppressor p53-binding protein 1 (53BP1), and H2AX, all of which are key factors in response to DNA damage. We then demonstrated that CHK2 was normally inhibited by SIRT1 via deacetylation but dissociated with SIRT1 under oxidative stress conditions. This led to acetylation and activation of CHK2, which increased cell death under oxidative stress conditions. Our data also indicated that SIRT1 deacetylated the K235 and K249 residues of CHK2, whose acetylation increased cell death in response to oxidative stress. Thus, SIRT1, a metabolic sensor, protects cells from oxidative stress-dependent DDR by the deacetylation of CHK2. Our findings suggest a crucial function of SIRT1 in inhibiting CHK2 as a potential therapeutic target for cancer treatment.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Estresse Oxidativo , Sirtuína 1/metabolismo , Acetilação , Sobrevivência Celular , Células HCT116 , Células HeLa , Humanos
19.
Sci Rep ; 8(1): 14379, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258109

RESUMO

Previously, we reported a molecular mechanism by which Ahnak potentiates transforming growth factor-ß (TGFß) signaling during cell growth. Here, we show that Ahnak induces epithelial-mesenchymal transition (EMT) in response to TGFß. EMT phenotypes, including altered in cell morphology, and expression patterns of various EMT marker genes were detected in HaCaT keratinocytes transfected with Ahnak-specific siRNA. Knockdown of Ahnak expression in HaCaT keratinocytes resulted in attenuated cell migration and invasion. We found that Ahnak activates TGFß signaling via Smad3 phosphorylation, leading to enhanced Smad3 transcriptional activity. To validate function of Ahnak in EMT of B16F10 cells having high metastatic and tumorigenic properties, we established B16F10 cells with stable knockdown of Ahnak. N-cadherin expression and Smad3 phosphorylation were significantly decreased in B16F10-shAhnak cells, compared to B16F10-shControl cells after treatment of TGFß. Moreover, TGFß failed to induce cell migration and cell invasion in B16F10-shAhnak cells. To determine whether Ahnak regulates the metastatic activity of B16F10 cells, we established a lung metastasis model in C57BL/6 mice via tail vein injection of B16F10-shAhnak cells. Lung metastasis was significantly suppressed in mice injected with B16F10-shAhnak cells, compared to those injected with B16F10-shControl cells. Taken together, we propose that TGFß-Ahnak signaling axis regulates EMT during tumor metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia
20.
Biosci Biotechnol Biochem ; 71(12): 2985-91, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18071258

RESUMO

A multi-well chip (MWC) is described by which mouse embryonic carcinoma (EC) stem cells form a comparatively more rapid and uniform embryoid body (EB) over the conventional hanging drop (HD) method. The newly developed MWC consists of an array of extruded through-holes, each of which holds a droplet of the cell suspension. The study found that the small curvature radius of the droplet in the MWC improved the EB formation rate of a hanging drop from 70% to 98%. Furthermore, the EBs formed by the MWC were uniformly round in shape regardless of the number of suspended cells ranging from 0.5 x 10(3) to 20 x 10(3). The ratio of beating colonies from the MWC was over 2-fold larger than that from HD. The experiments demonstrate that the MWC will be a valuable experimental tool for robust and reproducible EB-based differentiation of a defined number of ES cells.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Biomarcadores/metabolismo , Agregação Celular , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular Tumoral , Células-Tronco Embrionárias/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa