Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39028694

RESUMO

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Assuntos
COVID-19 , Pulmão , Organoides , SARS-CoV-2 , Internalização do Vírus , Humanos , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Pulmão/virologia , Pulmão/imunologia , Pulmão/patologia , Organoides/virologia , Tratamento Farmacológico da COVID-19 , Células-Tronco Pluripotentes Induzidas/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Inflamação , Citocinas/metabolismo , Apoptose
2.
PLoS Pathog ; 17(2): e1009165, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571304

RESUMO

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe, and not mild, infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of ACE2:RBD inhibition. B cell receptor (BCR) sequencing revealed that VH3-53 was enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against authentic SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and mutagenesis of RBD, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Convalescença , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Adulto , Idoso , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , Chlorocebus aethiops , Clonagem Molecular , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
3.
Biotechnol Bioeng ; 119(3): 963-982, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953085

RESUMO

Chinese hamster ovary (CHO) cells are the primary host for manufacturing of therapeutic proteins. However, productivity loss is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein expression. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide variants in DNA repair genes. Comparison with primary Chinese hamster cells confirmed DNA repair to be compromised in CHO. Correction of key DNA repair genes by single-nucleotide variant reversal or expression of intact complementary DNAs successfully improved DNA repair and mitigated karyotypic instability. Moreover, overexpression of intact copies of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show that correction of DNA repair genes yields improvements in genome stability in CHO, and provide new opportunities for cell line development for sustainable protein expression.


Assuntos
Reparo do DNA , Instabilidade Genômica , Animais , Células CHO , Cricetinae , Cricetulus , Reparo do DNA/genética , Instabilidade Genômica/genética , Cariotipagem
4.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464357

RESUMO

BACKGROUNDMultisystem inflammatory syndrome in children (MIS-C) is a rare but potentially severe illness that follows exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Kawasaki disease (KD) shares several clinical features with MIS-C, which prompted the use of intravenous immunoglobulin (IVIG), a mainstay therapy for KD. Both diseases share a robust activation of the innate immune system, including the IL-1 signaling pathway, and IL-1 blockade has been used for the treatment of both MIS-C and KD. The mechanism of action of IVIG in these 2 diseases and the cellular source of IL-1ß have not been defined.METHODSThe effects of IVIG on peripheral blood leukocyte populations from patients with MIS-C and KD were examined using flow cytometry and mass cytometry (CyTOF) and live-cell imaging.RESULTSCirculating neutrophils were highly activated in patients with KD and MIS-C and were a major source of IL-1ß. Following IVIG treatment, activated IL-1ß+ neutrophils were reduced in the circulation. In vitro, IVIG was a potent activator of neutrophil cell death via PI3K and NADPH oxidase, but independently of caspase activation.CONCLUSIONSActivated neutrophils expressing IL-1ß can be targeted by IVIG, supporting its use in both KD and MIS-C to ameliorate inflammation.FUNDINGPatient Centered Outcomes Research Institute; NIH; American Asthma Foundation; American Heart Association; Novo Nordisk Foundation; NIGMS; American Academy of Allergy, Asthma and Immunology Foundation.


Assuntos
COVID-19/complicações , Imunoglobulinas Intravenosas/uso terapêutico , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/terapia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/terapia , COVID-19/sangue , COVID-19/imunologia , COVID-19/terapia , Estudos de Casos e Controles , Morte Celular/imunologia , Linhagem da Célula/imunologia , Criança , Pré-Escolar , Proteína Ligante Fas/imunologia , Feminino , Humanos , Lactente , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/sangue , Contagem de Leucócitos , Masculino , Síndrome de Linfonodos Mucocutâneos/sangue , Ativação de Neutrófilo , Neutrófilos/classificação , Neutrófilos/imunologia , Neutrófilos/patologia , Síndrome de Resposta Inflamatória Sistêmica/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa