Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(1): 306-321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34904669

RESUMO

Poly(A)-binding protein (PABP) is a translation initiation factor that interacts with the poly(A) tail of mRNAs. PABP bound to poly(A) stimulates translation by interacting with the eukaryotic initiation factor 4G (eIF4G), which brings the 3' end of an mRNA close to its 5' m7G cap structure through consecutive interactions of the 3'-poly(A)-PABP-eIF4G-eIF4E-5' m7G cap. PABP is a highly abundant translation factor present in considerably larger quantities than mRNA and eIF4G in cells. However, it has not been elucidated how eIF4G, present in limited cellular concentrations, is not sequestered by mRNA-free PABP, present at high cellular concentrations, but associates with PABP complexed with the poly(A) tail of an mRNA. Here, we report that RNA-free PABPs dimerize with a head-to-head type configuration of PABP, which interferes in the interaction between PABP and eIF4G. We identified the domains of PABP responsible for PABP-PABP interaction. Poly(A) RNA was shown to convert the PABP-PABP complex into a poly(A)-PABP complex, with a head-to-tail-type configuration of PABP that facilitates the interaction between PABP and eIF4G. Lastly, we showed that the transition from the PABP dimer to the poly(A)-PABP complex is necessary for the translational activation function.


Assuntos
Proteínas de Ligação a Poli(A)/química , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619096

RESUMO

The pathogenic consequences of 369 unique human HsMLH1 missense variants has been hampered by the lack of a detailed function in mismatch repair (MMR). Here single-molecule images show that HsMSH2-HsMSH6 provides a platform for HsMLH1-HsPMS2 to form a stable sliding clamp on mismatched DNA. The mechanics of sliding clamp progression solves a significant operational puzzle in MMR and provides explicit predictions for the distribution of clinically relevant HsMLH1 missense mutations.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Sítios de Ligação , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , DNA/química , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
3.
J Biol Chem ; 298(11): 102505, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126773

RESUMO

MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Humanos , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Ligação Proteica
4.
J Pharmacokinet Pharmacodyn ; 50(6): 475-493, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925369

RESUMO

There are many challenges with rare diseases drug development and rare oncology indications are not different. To understand the regulatory landscape as it relates to application of clinical pharmacology principles in rare oncology product development, we reviewed publicly available information of 39 approvals by US FDA between January 2019 and March 2023. The objective was to understand the expected clinical pharmacology studies and knowledge base in such approvals. Model informed drug development (MIDD) applications were also reviewed, as such approaches are expected to play a critical role in filling clinical pharmacology gaps in rare oncology, where number of clinical trials and size of these trials will perhaps continue to be small. The findings highlighted how clinical pharmacology contributed to the evidence of effectiveness, dose optimization and elucidation of intrinsic and extrinsic factors affecting drug's behavior. Clinical pharmacology studies were often integrated with modeling in many of the NDAs/BLAs. Of the post marketing requirements (PMR) received, 18% were for dose optimization, 49% for DDI, 8% for QTc, 49% for specific population, and 5% for food effect. Two post marketing commitments (PMC) were issued for immunogenicity of the 11 biologics submissions. 15% (6 of 39) of the submissions used maximum tolerated dose (MTD) to advance their molecule into Phase 2 studies. Of them 3 approvals received PMR for dose optimization. 3 + 3 was the most prevalent Phase 1 design with use in 74% of the New Drug Applications (NDA)/Biologic License Applications (BLA) reviewed. Rest used innovative approaches such as BLRM, BOIN or mTPi, with BLRM being the most common. Seamless clinical pharmacology and MIDD approaches are paramount for rare oncology drug development.


Assuntos
Aprovação de Drogas , Farmacologia Clínica , Estados Unidos , United States Food and Drug Administration
5.
J Am Chem Soc ; 144(46): 21304-21317, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367536

RESUMO

This study addresses well-known shortcomings of poly(ethylene glycol) (PEG)-based conjugates. PEGylation is by far the most common method employed to overcome immunogenicity and suboptimal pharmacokinetics of, for example, therapeutic proteins but has significant drawbacks. First, PEG offers no protection from denaturation during lyophilization, storage, or oxidation (e.g., by biological oxidants, reactive oxygen species); second, PEG's inherent immunogenicity, leading to hypersensitivity and accelerated blood clearance (ABC), is a growing concern. We have here developed an 'active-stealth' polymer, poly(thioglycidyl glycerol)(PTGG), which in human plasma is less immunogenic than PEG (35% less complement activation) and features a reactive oxygen species-scavenging and anti-inflammatory action (∼50% less TNF-α in LPS-stimulated macrophages at only 0.1 mg/mL). PTGG was conjugated to proteins via a one-pot process; molar mass- and grafting density-matched PTGG-lysozyme conjugates were superior to their PEG analogues in terms of enzyme activity and stability against freeze-drying or oxidation; the latter is due to sacrificial oxidation of methionine-mimetic PTGG chains. Both in mice and rats, PTGG-ovalbumin displayed circulation half-lives up to twice as long as PEG-ovalbumin, but most importantly─and differently from PEG─without any associated ABC effect seen either in the time dependency of blood concentration, in the liver/splenic accumulation, or in antipolymer IgM/IgG titers. Furthermore, similar pharmacokinetic results were obtained with PTGGylated/PEGylated liposomal nanocarriers. PTGG's 'active-stealth' character therefore makes it a highly promising alternative to PEG for conjugation to biologics or nanocarriers.


Assuntos
Polietilenoglicóis , Polímeros , Ratos , Camundongos , Humanos , Animais , Polietilenoglicóis/metabolismo , Polímeros/farmacologia , Glicerol , Espécies Reativas de Oxigênio , Ovalbumina , Estabilidade Proteica
6.
Biochem Biophys Res Commun ; 618: 73-78, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35716598

RESUMO

Eukaryotic translation is a complex process that involves the interplay of various translation factors to convert genetic information into a specific amino acid chain. According to an elegant model of eukaryotic translation initiation, the 3' poly(A) tail of an mRNA, which is occupied by poly(A)-binding proteins (PABPs), communicates with the 5'-cap bound by eIF4E to enhance translation. Although the circularization of mRNA resulting from the communication is widely understood, it has yet to be directly observed. To explore mRNA circularization in translation, we analyzed the level of colocalization of eIF4E, eIF4G, and PABP on individual mRNAs in polysomal and subpolysomal fractions using single polysome analysis. Our results show that the three tested proteins barely coexist in mRNA in either polysomal or subpolysomal fractions, implying that the closed-loop structure generated by the communication between eIF4E, eIF4G, and PAPB may be transient during translation.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Ligação a Poli(A)/genética , Polirribossomos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas
7.
Nature ; 539(7630): 583-587, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27851738

RESUMO

Mismatched nucleotides arise from polymerase misincorporation errors, recombination between heteroallelic parents and chemical or physical DNA damage. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologues initiate mismatch repair and, in higher eukaryotes, act as DNA damage sensors that can trigger apoptosis. Defects in human mismatch repair genes cause Lynch syndrome or hereditary non-polyposis colorectal cancer and 10-40% of related sporadic tumours. However, the collaborative mechanics of MSH and MLH/PMS proteins have not been resolved in any organism. We visualized Escherichia coli (Ec) ensemble mismatch repair and confirmed that EcMutS mismatch recognition results in the formation of stable ATP-bound sliding clamps that randomly diffuse along the DNA with intermittent backbone contact. The EcMutS sliding clamps act as a platform to recruit EcMutL onto the mismatched DNA, forming an EcMutS-EcMutL search complex that then closely follows the DNA backbone. ATP binding by EcMutL establishes a second long-lived DNA clamp that oscillates between the principal EcMutS-EcMutL search complex and unrestricted EcMutS and EcMutL sliding clamps. The EcMutH endonuclease that targets mismatch repair excision only binds clamped EcMutL, increasing its DNA association kinetics by more than 1,000-fold. The assembly of an EcMutS-EcMutL-EcMutH search complex illustrates how sequential stable sliding clamps can modulate one-dimensional diffusion mechanics along the DNA to direct mismatch repair.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Difusão , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Complexos Multiproteicos/química , Proteínas MutL/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Transporte Proteico , Imagem Individual de Molécula
8.
Nucleic Acids Res ; 47(18): e107, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31340015

RESUMO

Real-time visualization of single-proteins or -complexes on nucleic acid substrates is an essential tool for characterizing nucleic acid binding proteins. Here, we present a novel surface-condition independent and high-throughput single-molecule optical imaging platform called 'DNA skybridge'. The DNA skybridge is constructed in a 3D structure with 4 µm-high thin quartz barriers in a quartz slide. Each DNA end is attached to the top of the adjacent barrier, resulting in the extension and immobilization of DNA. In this 3D structure, the bottom surface is out-of-focus when the target molecules on the DNA are imaged. Moreover, the DNA skybridge itself creates a thin Gaussian light sheet beam parallel to the immobilized DNA. This dual property allows for imaging a single probe-tagged molecule moving on DNA while effectively suppressing interference with the surface and background signals from the surface.


Assuntos
DNA/ultraestrutura , Ensaios de Triagem em Larga Escala/métodos , Ácidos Nucleicos Imobilizados/ultraestrutura , Imagem Individual de Molécula/métodos , Nanotecnologia/métodos , Imagem Óptica/métodos
9.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466340

RESUMO

Male hypogonadism is often treated by testosterone (T) replacement therapy such as oral administration of the ester prodrug, testosterone undecanoate (TU). However, the systemic exposure to T following oral TU is very low due to esterase-mediated metabolism, particularly in the small intestine. The aim of this work was to examine the esterase-inhibitory effect of natural fruit extract of strawberry (STW) on the intestinal degradation of TU as a potential approach to increasing the oral bioavailability of T. Herein, the hydrolysis of TU was assessed in fasted state simulated intestinal fluid with added esterase activity (FaSSIF/ES) and Caco-2 cell homogenates in the presence of STW extract. It is noteworthy that STW substantially inhibited the degradation of TU in FaSSIF/ES and Caco-2 cell homogenates at concentrations that could be achieved following oral consumption of less than one serving of STW fruit. This can significantly increase the fraction of unhydrolyzed TU in the intestinal lumen as well as in enterocytes. In addition, it was demonstrated that TU has high intestinal lymphatic transport potential as the association of TU with plasma-derived human chylomicrons was in the range of 84%. Therefore, oral co-administration of TU with STW could potentially increase the intestinal stability of TU and consequently the contribution of lymphatically delivered TU to the systemic exposure of T in vivo.


Assuntos
Fragaria/química , Intestino Delgado/metabolismo , Sistema Linfático/metabolismo , Extratos Vegetais/administração & dosagem , Testosterona/análogos & derivados , Testosterona/metabolismo , Administração Oral , Adulto , Disponibilidade Biológica , Células CACO-2 , Humanos , Hidrólise , Intestino Delgado/efeitos dos fármacos , Sistema Linfático/efeitos dos fármacos , Masculino
10.
Pharm Res ; 37(10): 205, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32989520

RESUMO

PURPOSE: Modulation of 5-HT3 receptor in the central nervous system (CNS) is a promising approach for treatment of neuropathic pain. The goal was to evaluate the role of P-glycoprotein (Pgp) in limiting exposure of different parts of the CNS to ondansetron (5-HT3 receptor antagonist) using wild-type and genetic knockout rat model. METHODS: Plasma pharmacokinetics and CNS (brain, spinal cord, and cerebrospinal fluid) disposition was studied after single 10 mg/kg intravenous dose. RESULTS: Pgp knockout resulted in significantly higher concentrations of ondansetron in all tested regions of the CNS at most of the time points. The mean ratio of the concentrations between KO and WT animals was 2.39-5.48, depending on the region of the CNS. Male and female animals demonstrated some difference in ondansetron plasma pharmacokinetics and CNS disposition. Mechanistic pharmacokinetic model that included two systemic disposition and three CNS compartments (with intercompartmental exchange) was developed. Pgp transport was incorporated as an efflux from the brain and spinal cord to the central compartment. The model provided good simultaneous description of all data sets, and all parameters were estimated with sufficient precision. CONCLUSIONS: The study provides important quantitative information on the role of Pgp in limiting ondansetron exposure in various regions of the CNS using data from wild-type and Pgp knockout rats. CSF drug concentrations, as a surrogate to CNS exposure, are likely to underestimate the effect of Pgp on drug penetration to the brain and the spinal cord.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sistema Nervoso Central/metabolismo , Ondansetron/farmacocinética , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos Knockout , Modelos Animais , Neuralgia/metabolismo , Ondansetron/sangue , Ondansetron/líquido cefalorraquidiano , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT3 de Serotonina/sangue , Antagonistas do Receptor 5-HT3 de Serotonina/líquido cefalorraquidiano , Medula Espinal/metabolismo
11.
Biomed Chromatogr ; 34(11): e4934, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32598032

RESUMO

A simple, sensitive and cost-effective HPLC-UV bioanalytical method for determination of lopinavir (LPV) in rat and human plasma was developed and validated. The plasma sample preparation procedure includes a combination of protein precipitation using cold acetonitrile and liquid-liquid extraction with n-hexane-ethyl acetate (7:3, v/v). A good chromatographic separation was achieved with a Phenomenex Gemini column (C18 , 150 mm × 2.0 mm, 5 µm) at 40°C with gradient elution, at 211 nm. Calibration curves were linear in the range 10-10,000 ng/mL, with a lower limit of quantification of 10 ng/mL using 100 µL of plasma. The accuracy and precision in all validation experiments were within the criteria range set by the guidelines of the Food and Drug Administration. This method was successfully applied to a preliminary pharmacokinetic study in rats following an intravenous bolus administration of LPV. Moreover, the method was subsequently fully validated for human plasma, allowing its use in therapeutic drug monitoring (TDM). In conclusion, this novel, simple and cost-efficient bioanalytical method for determination of LPV is useful for pharmacokinetic and drug delivery studies in rats, as well as TDM in human patients.


Assuntos
Antivirais/sangue , Cromatografia Líquida de Alta Pressão/métodos , Lopinavir/sangue , Espectrofotometria Ultravioleta/métodos , Animais , Antivirais/farmacocinética , Calibragem , Cromatografia Líquida de Alta Pressão/economia , Análise Custo-Benefício , Sistemas de Liberação de Medicamentos , Monitoramento de Medicamentos/métodos , Humanos , Limite de Detecção , Extração Líquido-Líquido , Lopinavir/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solventes , Espectrofotometria Ultravioleta/economia
12.
Biopharm Drug Dispos ; 41(4-5): 192-205, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32342986

RESUMO

The aim of the study was to develop a physiologically-based pharmacokinetic (PBPK) model to describe and predict whole-body disposition of doxorubicin following intravenous administration. The PBPK model was established using previously published data in mice and included 10 tissue compartments: lungs, heart, brain, muscle, kidneys, pancreas, intestine, liver, spleen, adipose tissue, and plasma. Individual tissues were described by either perfusion-limited or permeability-limited models. All parameters were simultaneously estimated and the final model was able to describe murine data with good precision. The model was used for predicting doxorubicin disposition in rats, rabbits, dogs, and humans using interspecies scaling approaches and was qualified using plasma and tissue observed data. Reasonable prediction of the plasma pharmacokinetics and tissue distribution was achieved across all species. In conclusion, the PBPK model developed based on a rich dataset obtained from mice, was able to reasonably predict the disposition of doxorubicin in other preclinical species and humans. Applicability of the model for special populations, such as patients with hepatic impairment, was also demonstrated. The proposed model will be a valuable tool for optimization of exposure profiles of doxorubicin in human patients.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Modelos Biológicos , Adulto , Animais , Antibióticos Antineoplásicos/sangue , Cães , Doxorrubicina/sangue , Feminino , Humanos , Masculino , Camundongos , Coelhos , Ratos , Especificidade da Espécie , Distribuição Tecidual
13.
J Biol Chem ; 293(37): 14285-14294, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30072380

RESUMO

Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.


Assuntos
DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Thermus/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , Modelos Teóricos , Ligação Proteica , Ressonância de Plasmônio de Superfície
14.
J Pharmacol Sci ; 139(2): 65-71, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30573325

RESUMO

Tacrolimus is one of the most commonly used immunosuppressive agents in animal models of transplantation. However, in these models, oral administration is often problematic due to the lowered compliance associated with highly invasive surgery and due to malabsorption in the intestinal tract. Therefore, we carried out a study to determine the pharmacokinetics of tacrolimus after intramuscular (IM) injection and to determine the optimal IM dosing regimens in primate models. Six male cynomolgus monkeys (Macaca fascicularis) were used in the study. Doses of 0.1 mg/kg and 5 mg were administered via IM injection and oral administration, respectively, once to determine single-dose pharmacokinetics and once daily for 5 days to determine multiple-dose pharmacokinetics. According to pharmacokinetic model estimates, the inter- and intra-individual variabilities in bioavailability following IM injection were remarkably reduced compared with those following oral administration. Monte Carlo simulations revealed that Cpeak, Ctrough and AUC would also have less variability following IM injection compared with oral administration. In this study, we found that the pharmacokinetic characteristics of tacrolimus were more constant following IM injection compared with oral administration. These results suggest that IM injection can be an alternative route of administration fin non-human primate model studies.


Assuntos
Imunossupressores/administração & dosagem , Imunossupressores/farmacocinética , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Imunossupressores/toxicidade , Injeções Intramusculares , Macaca fascicularis , Masculino , Modelos Biológicos , Tacrolimo/toxicidade
15.
Proc Natl Acad Sci U S A ; 113(12): 3281-6, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951673

RESUMO

Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo
16.
Biomed Chromatogr ; 33(11): e4653, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31322284

RESUMO

Ondansetron, a widely used antiemetic agent, is a P-glycoprotein (P-gp) substrate and therefore expression of P-gp at the blood-brain barrier limits its distribution to the central nervous system (CNS), which was observed to be reversed by coadministration with P-gp inhibitors. Tariquidar is a potent and selective third-generation P-gp inhibitor, and coadministration with ondansetron has shown improved ondansetron distribution to the CNS. There is currently no reported bioanalytical method for simultaneously quantifying ondansetron with a third-generation P-gp inhibitor. Therefore, we aimed to develop and validate a method for ondansetron and tariquidar in rat and human plasma samples. A full validation was performed for both ondansetron and tariquidar, and sample stability was tested under various storage conditions. To demonstrate its utility, the method was applied to a preclinical pharmacokinetic study following coadministration of ondansetron and tariquidar in rats. The presented method will be valuable in pharmacokinetic studies of ondansetron and tariquidar in which simultaneous determination may be required. In addition, this is the first report of a bioanalytical method validated for quantification of tariquidar in plasma samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ondansetron/sangue , Quinolinas/sangue , Animais , Humanos , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
17.
EMBO J ; 33(9): 1061-72, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24733841

RESUMO

The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3' flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a "5' end binding pocket" that hosts the 5' nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3' flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5' flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3' flap DNA substrates with 5' nicked ends.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Endodesoxirribonucleases/química , Endonucleases/química , Região 5'-Flanqueadora , Cristalografia por Raios X , Quebras de DNA de Cadeia Simples , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Mol Pharm ; 15(4): 1578-1586, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29502421

RESUMO

Low molecular weight gelators (LMWGs) of chemotherapeutic drugs represent a valid alternative to the existing polymer-based formulations used for targeted delivery of anticancer drugs. Herein we report the design and development of novel self-assembling gelators of the antitumor benzothiazole 5F 203 (1). Two different types of derivatives of 1 were synthesized, formed by an amide (2) and a carbamate (3a-3d) linker, respectively, which showed potent in vitro antitumor activity against MCF-7 mammary and IGROV-1 ovarian carcinoma cells. In contrast, MRC-5 fibroblasts were inherently resistant to the above derivatives (GI50 > 10 µM), thus revealing stark selectivity against the malignant cell lines over the nontransformed fibroblasts. Western blots assays demonstrated induction of CYP1A1 by 1 and its derivatives only in sensitive malignant cells (MCF-7), corroborating conservation of a CYP1A1-mediated mechanism of action. The ability to form stable gels under relatively high strains was supported by rheological tests; in addition, their inner morphology was characterized as possessing a crossed-linked nanostructure, with the formation of thick aggregates with variable widths between 1100 and 400 nm and lengths from 8 to 32 µm. Finally, in vitro dissolution studies proved the ability of hydrogel 2 to release 48% of 2 within 80 h, therefore demonstrating its ability to act as a platform for localized delivery.


Assuntos
Antineoplásicos/química , Benzotiazóis/química , Hidrogéis/química , Amidas/química , Carbamatos/química , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Feminino , Células HCT116 , Humanos , Células MCF-7 , Nanoestruturas/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo
19.
J Am Chem Soc ; 139(22): 7603-7615, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28493679

RESUMO

Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

20.
Opt Express ; 25(25): 32189-32197, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245882

RESUMO

Real-time optical imaging combined with single-molecule manipulation broadens the horizons for acquiring information about the spatiotemporal localization and the mechanical details of target molecules. To obtain an optical signal outside the focal plane without unintended interruption of the force signal in single-molecule optical imaging-force spectroscopy, we developed an optical method to extend the depth of field in a high numerical aperture objective (≥ 1.2), required to visualize a single fluorophore. By axial scanning, using an electrically tunable lens with a fixed sample, we were successfully able to visualize the epidermal growth factor receptor (EGFR) moving along the three-dimensionally elongated filamentous actin bundles connecting cells (intercellular nanotube), while another EGFR on the intercellular nanotube was trapped by optical tweezers in living cells. Our approach is simple, fast and inexpensive, but it is powerful for imaging target molecules axially in single-molecule optical imaging-force spectroscopy.


Assuntos
Citoesqueleto de Actina/química , Receptores ErbB/análise , Lentes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Pinças Ópticas , Análise Espectral/métodos , Células HeLa , Humanos , Microscopia de Fluorescência/instrumentação , Nanotubos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa