Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 629(8013): 878-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720086

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Simulação por Computador , Desenho de Fármacos , SARS-CoV-2 , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Mutação , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Análise Mutacional de DNA , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , Desenho de Fármacos/métodos
2.
Biotechnol Bioeng ; 117(3): 603-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709513

RESUMO

Antimicrobial peptides (AMPs) are regarded as attractive alternatives to conventional antibiotics, but their production in microbes remains challenging due to their inherent bactericidal nature. To address these limitations, we have developed a novel AMP fusion protein system based on an encapsulin nanocompartment protein and have demonstrated its utility in enhancing expression of HBCM2, an AMP with activity against Gram-negative bacteria. Here, HBCM2 was fused to the N-terminus of several Encapsulin monomer (Enc) variants engineered with multiple TEV protease recognition site insertions to facilitate proteolytic release of the fused HBCM2. Fusion of HBCM2 to the Enc variants, but not other common carrier proteins, enabled robust overexpression in Escherichia coli C43(DE3) cells. Interestingly, variants with a TEV site insertion following residue K71 in Enc exhibited the highest overexpression and HBCM2 release efficiencies compared to other variants but were deficient in cage formation. HBCM2 was purified from the highest expressing variant following TEV protease digestion and was found to be highly active in inhibiting E. coli growth (MIC = 5 µg/ml). Our study demonstrates the potential use of the Enc system to enhance expression of AMPs for biomanufacturing and therapeutic applications.


Assuntos
Proteínas de Transporte , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes de Fusão , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endopeptidases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
3.
Mol Syst Biol ; 8: 576, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22453733

RESUMO

Tandem repeats of DNA that contain transcription factor (TF) binding sites could serve as decoys, competitively binding to TFs and affecting target gene expression. Using a synthetic system in budding yeast, we demonstrate that repeated decoy sites inhibit gene expression by sequestering a transcriptional activator and converting the graded dose-response of target promoters to a sharper, sigmoidal-like response. On the basis of both modeling and chromatin immunoprecipitation measurements, we attribute the altered response to TF binding decoy sites more tightly than promoter binding sites. Tight TF binding to arrays of contiguous repeated decoy sites only occurs when the arrays are mostly unoccupied. Finally, we show that the altered sigmoidal-like response can convert the graded response of a transcriptional positive-feedback loop to a bimodal response. Together, these results show how changing numbers of repeated TF binding sites lead to qualitative changes in behavior and raise new questions about the stability of TF/promoter binding.


Assuntos
Sítios de Ligação/genética , Expressão Gênica , Ligação Proteica/genética , Fatores de Transcrição/genética , Imunoprecipitação da Cromatina/métodos , Citometria de Fluxo/métodos , Modelos Moleculares , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
4.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324800

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

5.
Biomed Opt Express ; 13(8): 4134-4159, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032581

RESUMO

Legionella is a genus of ubiquitous environmental pathogens found in freshwater systems, moist soil, and composted materials. More than four decades of Legionella research has provided important insights into Legionella pathogenesis. Although standard commercial microscopes have led to significant advances in understanding Legionella pathogenesis, great potential exists in the deployment of more advanced imaging techniques to provide additional insights. The lattice light sheet microscope (LLSM) is a recently developed microscope for 4D live cell imaging with high resolution and minimum photo-damage. We built a LLSM with an improved version for the optical layout with two path-stretching mirror sets and a novel reconfigurable galvanometer scanner (RGS) module to improve the reproducibility and reliability of the alignment and maintenance of the LLSM. We commissioned this LLSM to study Legionella pneumophila infection with a tailored workflow designed over instrumentation, experiments, and data processing methods. Our results indicate that Legionella pneumophila infection is correlated with a series of morphological signatures such as smoothness, migration pattern and polarity both statistically and dynamically. Our work demonstrates the benefits of using LLSM for studying long-term questions in bacterial infection. Our free-for-use modifications and workflow designs on the use of LLSM system contributes to the adoption and promotion of the state-of-the-art LLSM technology for both academic and commercial applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa