RESUMO
Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.
Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia , Polimorfismo de Nucleotídeo Único , Cervos/genética , Fatores de RiscoRESUMO
RATIONALE: The production of bottled water requires a forensic discriminant technique that enables the identification of the brands or accidents caused by intended contaminants. The bottled water poisoning crimes have drawn much attention, and such crimes may recur in the future. The water is colorless and odorless, and thus it is difficult to detect contaminated water through visual observation. Thus, bottled water can be easily exploited for poisoning, and a method for tracing their origin is currently required. METHODS: In this study, a total of 27 brands of bottled water samples were analyzed to determine stable oxygen isotopes, strontium isotopes, major and trace elements. The geographical origin of the water was traced based on the climatic and geographical characteristics of the location from where water was sourced, which was assumed to be reflected in the bottled water. Furthermore, we investigated whether this method can be applied to identify bottled water products. RESULTS: The results demonstrated that the characteristics of the bottled water, including the oxygen stable isotope ratios, reflect the latitude and altitude of bottled water source in South Korea, from the high-latitude region to the coastal regions. In addition, the results indicated that excellent discrimination was achieved using strontium isotopes to identify source areas with different types of bedrock, complex underlying lithologies, and ocean areas in South Korea. A statistical method based on discriminant analysis was applied to measure trace elements, and the results effectively reflected the characteristics of water-rock interactions (cross-validated classification probability: ≥92%). CONCLUSIONS: These data suggest that the geographical characteristics of the source area are well reflected in commercial bottled water in South Korea. The proposed analytical methods can be utilized to trace the geographical origin of different bottled water samples and identify bottled water products used in poisoning crimes.
Assuntos
Água Potável , Oligoelementos , Água Potável/análise , Isótopos de Oxigênio/análise , Oxigênio , República da Coreia , Isótopos de Estrôncio/análiseRESUMO
OBJECTIVES: Clostridioides difficile is an etiological agent of enteric diseases in humans and animals. Animals are considered a potential reservoir due to the genetic and antimicrobial resistance similarities between human and animal C. difficile isolates. In this study, we evaluated the genetic characteristics and antimicrobial resistance profiles of C. difficile isolated from 942 fecal samples collected from horses in South Korea during 2019-2020. METHODS: The C. difficile isolates were tested for toxin genes including tcdA (A), tcdB (B), and cdtAB (CDT) and deletions of the tcdC gene by PCR. In addition, ribotyping, multilocus sequence typing, and antimicrobial susceptibility tests were performed. RESULTS: Twenty-three (2.4%) C. difficile isolates were associated with diarrhea in foals under 1 year old during the spring-summer period. Of these, 82.6% were toxigenic strains, determined to be A+B+CDT+ (52.1%) or A+B+CDTâ (30.4%). All isolates were susceptible to metronidazole and vancomycin, and resistant to cefotaxime and gentamicin, and 76.2% were multidrug resistant (MDR). RT078/ST11/Clade 5 was the most common genotype (47.8%), which was also found in animals and humans worldwide. All RT078/ST11/Clade 5 strains were toxigenic and had deletions of the tcdC gene. About half of these strains were resistant to moxifloxacin, and 63.6% were MDR. CONCLUSIONS: C. difficile isolates in this study consisted mostly of toxigenic and MDR strains, and their genetic properties were highly similar to human C. difficile isolates. These results suggest high possibilities of zoonotic transmission and can provide knowledge for establishing strategies for the treatment and prevention of C. difficile infection.
Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Farmacorresistência Bacteriana/genética , Cavalos , Testes de Sensibilidade Microbiana , Prevalência , República da Coreia/epidemiologia , RibotipagemRESUMO
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox regulation. The redox activity of APE1/Ref-1 is involved in inflammatory responses and regulation of DNA binding of transcription factors related to cell survival pathways. However, the effect of APE1/Ref-1 on adipogenic transcription factor regulation remains unknown. In this study, we investigated the effect of APE1/Ref-1 on the regulation of adipocyte differentiation in 3T3-L1 cells. During adipocyte differentiation, APE1/Ref-1 expression significantly decreased with the increased expression of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBP)-α and peroxisome proliferator-activated receptor (PPAR)-γ, and the adipocyte differentiation marker adipocyte protein 2 (aP2) in a time-dependent manner. However, APE1/Ref-1 overexpression inhibited C/EBP-α, PPAR-γ, and aP2 expression, which was upregulated during adipocyte differentiation. In contrast, silencing APE1/Ref-1 or redox inhibition of APE1/Ref-1 using E3330 increased the mRNA and protein levels of C/EBP-α, PPAR-γ, and aP2 during adipocyte differentiation. These results suggest that APE1/Ref-1 inhibits adipocyte differentiation by regulating adipogenic transcription factors, suggesting that APE1/Ref-1 is a potential therapeutic target for regulating adipocyte differentiation.
Assuntos
Receptores Ativados por Proliferador de Peroxissomo , Fatores de Transcrição , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Morpholine, a heterocycle composed of an ether and amine, is commonly used as a precursor in many organic synthesis processes because of the nucleophilicity induced by the lone-pair electrons of the nitrogen atom within its ring. Herein, we investigated the conformer-specific photoionization dynamics of morpholine under molecular-beam conditions using high-resolution vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) mass spectroscopy. Two-dimensional potential energy surfaces (2D PESs) associated with the conformational changes in the neutral (S0) and cationic (D0) ground states were constructed to identify the conformer(s) corresponding to the obtained VUV-MATI spectrum. The 2D PESs indicated that the chair and twisted boat forms with equatorial and axial NH conformations (four conformers with the following relative energies: Chair-Eq < Chair-Ax ⪠Twisted boat-Ax < Twisted boat-Eq) of morpholine lie on the global minimum of the S0 state. However, only the axial-like NH conformation in each form (stable Chair-Ax-like+Ë and Twisted boat-Ax-like+Ë conformers) exists in the D0 state. Accordingly, vibration assignment was performed based on Franck-Condon (FC) analyses of the adiabatic ionic transitions from each Chair-Eq and Chair-Ax conformer to the Chair-Ax-like+Ë conformer. The FC analyses revealed that only the Chair-Ax conformer contributes to the ionic transitions to the Chair-Ax-like+Ë conformer owing to the large FC factors, whose adiabatic ionization energy was determined to be 8.1003 ± 0.0005 eV. Consequently, adiabatic ionization arises because of electron removal from the highest occupied molecular orbital consisting of the nonbonding orbital of the N atom in the Chair-Ax conformer.
Assuntos
Etil-Éteres , Morfolinas , Conformação Molecular , Elétrons , AminasRESUMO
The alteration of the valence molecular orbitals' ordering of halopyridine molecules, by the introduction of a halogen atom(s) as substituent on the pyridine ring, has spurred an extensive interest for their investigation. Herein, the effect of a fluorine substituent on the two outermost orbitals of pyridine was elucidated by investigating the photoionization dynamics of 2-fluoropyridine (2-FP), considering that the geometrical changes with respect to the neutral geometry induced by adiabatic ionic transition affect the vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectrum. The adiabatic ionization energy associated with the 0-0 band on the measured high-resolution VUV-MATI spectrum was determined to be 9.6702 ± 0.0004 eV (77 995 ± 3 cm-1), which differs considerably from the 9.401 eV by two-color ionization spectroscopy. Franck-Condon simulation of the MATI spectrum corresponded quantitatively with the experimental results. Interestingly, among the forbidden transitions under CS symmetry, an out-of-plane ring-bending mode resulting from the warped cationic structure of 2-FP with C1 symmetry was discovered. Rigorously, among the unassigned peaks, the first prominent peak at 78 532 cm-1 should rather be assigned as the origin of the excited electronic state (D1) of the 2-FP cation, in accordance with time-dependent density functional theory calculations. Natural bond orbital analysis led to the conclusion that such observations could be induced by electron removal from the highest occupied molecular orbital (HOMO) consisting of the π orbital of the pyridine ring and lone-pair orbital of the fluorine atom or from the HOMO-1 of the molecular non-bonding orbitals, to generate the two proximate electronic states of the cation.
RESUMO
The simultaneous regulation of cancer cells and inflammatory immune cells in the tumor microenvironment (TME) can be an effective strategy in treating aggressive breast cancer types, such as triple-negative breast cancer (TNBC). Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multi-functional nuclear protein that can be stimulated and then secreted. The extracellular APE1/Ref-1 causes a reduction in disulfide bonds in cytokine receptors, resulting in their conformational changes, thereby inhibiting inflammatory signaling. Furthermore, the secreted APE1/Ref-1 in response to acetylation has been shown to bind to a receptor for the advanced glycation end product (RAGE), initiating the apoptotic cell death of TNBC in vitro and in vivo. This study used PPTLS-APE1/Ref-1 in an adenovirus vector (Ad-PPTLS-APE1/Ref-1) for the constant expression of extracellular APE1/Ref-1, and our results demonstrated its dual function as an apoptotic initiator and inflammation regulator. Injecting MDA-MB 231 orthotopic xenografts with the Ad-PPTLS-APE1/Ref-1 inhibited tumor growth and development in response to acetylation. Moreover, Ad-PPTLS-APE1/Ref-1 generated reactive oxygen species (ROS), and tumor tissues derived from these xenografts exhibited apoptotic bodies. Compared to normal mice, a comparable ratio of anti- and pro-inflammatory cytokines was observed in the plasma of Ad-PPTLS-APE1/Ref-1-injected mice. Mechanistically, the disturbed cytokine receptor by reducing activity of PPTLS-APE1/Ref-1 inhibited inflammatory signaling leading to the inactivation of the p21-activated kinase 1-mediated signal transducer and activator of transcription 3/nuclear factor-κB axis in tumor tissues. These results suggest that the regulation of inflammatory signaling with adenoviral-mediated PPTLS-APE1/Ref-1 in tumors modulates the secretion of pro-inflammatory cytokines in TME, thereby inhibiting aggressive cancer cell progression, and could be considered as a promising and safe therapeutic strategy for treating TNBCs.
Assuntos
Apoptose , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias de Mama Triplo Negativas , Animais , Carcinogênese/genética , Transformação Celular Neoplásica , Citocinas/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Inflamação/patologia , Camundongos , Oxirredução , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente TumoralRESUMO
Pivaldehyde, which is an unwanted by-product released with engine exhaust, has received considerable research attention because of its hydrocarbon oxidations at atmospheric temperature. To gain insight into the conformer-specific reaction dynamics, we investigated the conformational structures of the pivaldehyde molecule in neutral (S0) and cationic (D0) states using the recently invented IR-resonant VUV-MATI mass spectroscopy. Additionally, we constructed the two-dimensional potential energy surfaces (2D PESs) associated with the conformational transformations in the S0 and D0 states to deduce the conformations corresponding to the measured vibrational spectra. The 2D PESs indicated the presence of only the eclipsed conformation in the global minima of both states, unlike those in propanal and isobutanal. However, comparing the IR-dip VUV-MATI spectra from two intense peaks in the VUV-MATI spectrum with the anharmonic IR simulations revealed the correspondence between the gauche conformer on the S0 state and the measured IR spectra. Furthermore, Franck-Condon analysis confirmed that most peaks in the VUV-MATI spectrum are attributed to the adiabatic ionic transitions between the neutral gauche and cationic eclipsed conformers in pivaldehyde. Consequently, electron removal from the highest occupied molecular orbital, consisting of the nonbonding orbital of the oxygen atom in pivaldehyde, promoted the formyl-relevant modes in the induced cationic eclipsed conformer.
Assuntos
Elétrons , Conformação Molecular , Espectrometria de Massas , Cátions/química , Espectrofotometria InfravermelhoRESUMO
2-Cyclopenten-1-one (2CP), which is a cyclic enone, has been considered an important precursor because of its versatile functionality in the synthesis of natural products and materials for biofuels. Here, we report the adiabatic ionization energy (AIE) and cationic structure of 2CP in the ionic transition between the neutral S0 and the cationic D0 states probed by high-resolution vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. From the 0-0 band position in the VUV-MATI spectrum supported by the VUV-photoionization efficiency curve, the AIE of 2CP was determined to be 9.3477 ± 0.0004 eV (75,395 ± 3 cm-1), which is in good agreement with the reference value but much more accurate. The measured MATI spectrum combined with the Franck-Condon fitting at the B3LYP/cc-pVTZ level revealed that the cationic structure of 2CP is twisted with the C1 symmetry, whereas the neutral 2CP has the CS symmetry. The results indicate that geometrical changes induced by ionization are mainly attributed to the electron removal from the highest occupied molecular orbital, which consists of nonbonding orbitals on the oxygen atom in the carbonyl group interacting with the σ orbitals in the molecular plane of 2CP. Consequently, lowering the C1 symmetry for cationic 2CP led to the promotions of the ring-bending and ring-twisting modes in the MATI spectrum, which correspond to the ring puckering and CâC twisting in the S0 state, respectively.
RESUMO
Conventional ion spectroscopy is inapplicable for ions produced in low concentrations or with low spectral resolutions. Hence, we constructed a high-resolution vacuum ultraviolet mass-analyzed threshold ionization (HR VUV-MATI) spectrometer composed of a four-wave frequency mixing cell capable of generating long-lasting and intense VUV laser pulses of â¼1 × 1010 photons/pulse at wavelengths of 123.6-160.0 nm, a space-focused linear time-of-flight photoionization chamber with a new ion-source assembly, and a compact molecular beam chamber with a temperature-controlled pulsed nozzle for ion spectroscopy. The ion-source assembly and pulsing schemes enabled an â¼15-µs-delayed but extremely weak pulsed-field-ionization of the molecules in the zero-kinetic-energy (ZEKE) states and first-order space focusing of the generated MATI ions. These ZEKE states were effectively generated by a minute electric jitter from the high-lying Rydberg states, which were initially prepared via VUV photoexcitation. The spectral and mass resolutions (â¼5 cm-1 and 2400, respectively) and the signal strength were simultaneously enhanced using this spectrometer. Moreover, it could be used to measure the fine vibrational spectrum from the zero-point level of the cation and the exact adiabatic ionization energy of the neutral molecule. Additionally, it could be used to measure the appearance energies of the photoproducts and elucidate the vibrational structures of the cationic isotopomers, utilizing other pulsing schemes. Furthermore, this spectrometer could be used to analyze the congested vibrational spectrum of a cation with multiple conformations. Thus, the HR VUV-MATI spectrometer-a potential alternative to photoelectron spectrometers-can be used to analyze the conformational structure-dependent reactivities.
RESUMO
Enterocytozoon bieneusi is a microsporidian pathogen. Recently, the equestrian population is increasing in Korea. The horse-related zoonotic pathogens, including E. bieneusi, are concerns of public health. A total of 1,200 horse fecal samples were collected from riding centers and breeding farms in Jeju Island and inland areas. Of the fecal samples 15 (1.3%) were PCR positive for E. bieneusi. Interestingly, all positive samples came from Jeju Island. Diarrhea and infection in foals were related. Two genotypes (horse1, horse2) were identified as possible zoonotic groups requiring continuous monitoring.
Assuntos
Enterocytozoon , Microsporidiose , Animais , China , Enterocytozoon/genética , Fezes , Genótipo , Cavalos , Microsporidiose/epidemiologia , Microsporidiose/veterinária , Filogenia , Prevalência , Zoonoses/epidemiologiaRESUMO
Piperidine has received attention in pharmaceutical synthesis and biochemical degradation because of its conformational activity. We explored the conformational structures of piperidine in the neutral (S0) and cationic (D0) ground states by conformer-specific vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy, which provides high-resolution vibrational spectra for the corresponding cationic conformer. To identify conformers corresponding to the obtained VUV-MATI spectra, equilibrium structures of piperidine conformers in the S0 and D0 states were determined at various density functional theory levels, and potential energy surfaces associated with the conformational changes were constructed. Notably, the chair form interconverting between the equatorial NH and the axial NH conformers (Chair-Eq and Chair-Ax) in piperidine lies on the global minimum of the S0 state, but only the axial-like NH conformer (Chair-Ax-like) in chair form exists in the D0 state. The vibrational assignment of the observed spectra was accomplished through Franck-Condon (FC) analysis for adiabatic transitions between two Chair-Eq and Chair-Ax conformers and a cationic Chair-Ax-like conformer. Rigorous FC analysis revealed the precise structure of a cationic Chair-Ax-like conformer induced by removal of an electron from the lone-pair sp3 orbital of the nitrogen atom in piperidine. The adiabatic ionization energies of Chair-Eq and Chair-Ax conformers converting to a cationic state were determined to be 64 704 ± 4 cm-1 (8.0223 ± 0.0005 eV) and 64 473 ± 4 cm-1 (7.9936 ± 0.0005 eV), respectively. Consequently, the difference between their adiabatic ionization energies allowed the accurate determination of the conformational stability of Chair-Eq and Chair-Ax conformers in piperidine (231 ± 4 cm-1).
RESUMO
2-Chloropyridine (2-CP) has received significant attention, owing to the effect of the substitution of a halogen in pyridine on the highest occupied molecular orbital (HOMO). To elucidate the substitution effect of the chlorine atom on the HOMO of pyridine, we obtained one-photon vacuum ultraviolet mass-analysed threshold ionization (VUV-MATI) spectra of 2-CP having 35Cl or 37Cl to analyse the isotope effect on the vibrational mode. Based on the 0-0 band in the MATI spectrum of 2-CP having 35Cl, the adiabatic ionization energy was determined to be 9.4743 ± 0.0005 eV (76 415 ± 4 cm-1) with a similar value for 37Cl, which is much lower but more accurate than the vertical value of 9.63 eV determined by photoelectron spectroscopy. Subsequently, the MATI spectrum, which was affected by the geometrical change with respect to the neutral geometry upon ionization, could be analysed by Franck-Condon fitting and spectral correlation between the two isotopomers. Notably, we observed the appearance of the out-of-plane ring bending modes resulting from ring distortion, unlike in pyridine. Furthermore, natural bond orbital analysis led to the conclusion that the warped structure with C1 symmetry of cationic 2-CP is induced by the electron removal from the HOMO consisting of the π orbital in the pyridine ring, which is stabilized by hyperconjugation with the lone-pair p orbitals of a nitrogen and chlorine atom.
RESUMO
The conformers of tetrahydrothiophene (THT) in the neutral (S0) and cationic (D0) ground states have attracted significant attention in terms of the conformational interconversion through pseudorotation. Herein, these conformers were explored by utilising one-photon mass-analysed threshold ionization (MATI) spectroscopy using the coherently tunable vacuum ultraviolet laser pulse generated by four-wave difference-frequency mixing in Kr medium, which allowed the acquisition of the vibrational spectrum of the corresponding cation. To identify the conformer corresponding to the measured MATI spectrum, the potential energy surfaces associated with pseudorotation in the S0 and D0 states were constructed at the B3LYP/cc-pVTZ level, where the twisted conformer with C2 symmetry in both states lies at the global minimum, while the Cs and C2v conformations were located at the saddle points. Although most of the peaks observed in the spectrum could be assigned as the ionic transitions between the twisted conformers (C2 symmetry) in the S0 and D0 states, distinct nontotally symmetric modes could not be assigned to any allowed vibration. Hence, Franck-Condon fitting was applied for the vibrational assignments in the observed spectrum. This revealed that the cationic conformer had a bent-like twist conformation of C1 symmetry instead of C2 symmetry. Furthermore, the geometrical changes induced by the removal of an electron from the non-bonding orbital of the sulfur atom gave prominent overtones and combination bands of the ring out-of-plane modes associated with pseudorotation as well as the stretching of 2C-1S-3C in the ring.
RESUMO
We investigated the dissociation processes of a cationic conformer, induced by conformer-specific photoionization of cyclopentanone (CP) using a one-photon vacuum ultraviolet (VUV) laser pulse of energy in the range 9.24-9.92 eV for a few nanoseconds, generated by four-wave difference frequency mixing in a Kr cell. The adiabatic ionization energy of the CP was accurately determined to be 9.2697 ± 0.0009 eV, based on the VUV photoionization efficiency curve obtained using high-resolution VUV-photoionization time-of-flight (TOF) mass spectroscopy. The constructed potential energy contours, associated with the twisting and out-of-plane motions in the S0 and D0 states, revealed that the ionization energy value corresponded to a twisted conformer with C2 symmetry at the global minimum. Subsequently, the low photon energy above the ionization onset of the twisted conformer in the CP led to C2H4 elimination, producing a C3H4O+ fragment directly prior to CO elimination for the C4H8 + fragment. The appearance energies for the C3H4O+ and C4H8 + were determined to be 9.7068 ± 0.0017 eV and 9.7483 ± 0.0017 eV, respectively, by measuring the fragmentation yield curves for two fragments analyzed in the TOF mass spectra. The formation enthalpy for each fragment ion at 0 K, evaluated using the measured and thermochemical data, enabled the realization of plausible structures for the produced fragment ions. Consequently, based on the results of the quantum chemical calculation on the dissociation processes of the twisted CP cation (t-CP+), we suggest that the fragmentation processes to C3H4O+ and C4H8 + correspond to the methylketene and (E)-2-butene cations, respectively.
RESUMO
We report conformational and vibrational assignments of vacuum ultraviolet mass-analyzed threshold ionization spectrum of the isolated gauche conformer, based on previously determined conformer-specific photoionization and conformational stabilities of isobutanal. The vibrational spectrum of the pure cationic gauche conformer was acquired by removing the trans conformer via conformationally effective cooling with Ar carrier gas. The peaks in the spectrum were assigned by Franck-Condon (FC) fitting by adjusting the cationic geometrical parameters of the gauche conformer at the CAM-B3LYP/cc-pVTZ level. Based on the good agreement between the experimental and calculated results, we were able to determine the precise structure of the cationic gauche conformer of isobutanal with C1 symmetry. Notably, the unveiled vibrational structure was mainly attributed to a geometrical change along the vibrational motions associated with the formyl torsion and CC stretching upon ionization, resulting in their prominent spectral overtones and combination bands with other fundamental vibrations. On the potential energy curve for the formyl torsion of the cationic gauche conformer determined by FC fitting, the transition barrier at 313 cm-1 preserved the hindered formyl torsion in the case of a harmonic potential well, which was confirmed by the progression of formyl torsion, namely, 331, 332, and 333 observed at 60, 120, and 180 cm-1, respectively.
RESUMO
Acetylation of nuclear apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is associated with its extracellular secretion, despite the lack of an N-terminal protein secretion signal. In this study, we investigated plasma membrane targeting and translocation of APE1/Ref-1 in HEK293T cells with enhanced acetylation. While APE1/Ref-1 targeting was not affected by inhibition of the endoplasmic reticulum/Golgi-dependent secretion, its secretion was reduced by inhibitors of ATP-binding cassette (ABC) transporters, and siRNA-mediated down-regulation of ABC transporter A1. The association between APE1/Ref-1 and ABCA1 transporter was confirmed by proximal ligation assay and immunoprecipitation experiments. An APE1/Ref-1 construct with mutated acetylation sites (K6/K7R) showed reduced co-localization with ABC transporter A1. Exposure of trichostatin A (TSA) induced the acetylation of APE1/Ref-1, which translocated into membrane fraction. Taken together, acetylation of APE1/Ref-1 is considered to be necessary for its extracellular targeting via non-classical secretory pathway using the ABCA1 transporter.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Via Secretória , Acetilação , Motivos de Aminoácidos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células HEK293 , Humanos , Ácidos Hidroxâmicos/farmacologia , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico/efeitos dos fármacosRESUMO
A stray female cat of unknown age, presenting bright red watery diarrhea, was submitted to the Animal and Plant Quarantine Agency for diagnosis. In the small intestines extracted from the necropsied cat, numerous white oval-shaped organisms were firmly embedded in the mucosa and there was thickening of intestinal wall. Histopathological analysis revealed severe necrotizing enteritis, together with atrophied intestinal villi, exfoliated enterocytes, and parasitic worms. Recovered worms were identified as Pharyngostomum cordatum by morphological observation and genetic analysis. Although P. cordatum is known to occur widely in Korea, this is the first clinical description of an infection by P. cordatum causing severe feline enteritis.
Assuntos
Doenças do Gato/diagnóstico , Doenças do Gato/patologia , Diarreia/veterinária , Enterocolite Necrosante/veterinária , Trematódeos/isolamento & purificação , Infecções por Trematódeos/veterinária , Animais , Doenças do Gato/parasitologia , Gatos , Diarreia/diagnóstico , Diarreia/parasitologia , Diarreia/patologia , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/parasitologia , Enterocolite Necrosante/patologia , Feminino , Histocitoquímica , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Coreia (Geográfico) , Trematódeos/anatomia & histologia , Trematódeos/genética , Infecções por Trematódeos/diagnóstico , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/patologiaRESUMO
Isobutanal is an aliphatic aldehyde which has been extensively studied as an important intermediate in isomerization reactions as well as in astrochemically relevant models in the interstellar medium. Herein, we report on the conformer-specific photoionization and conformational stabilities of isobutanal utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet (VUV) pulses. The conformational population of isobutanal under different supersonic expansion conditions was explored to identify the conformers, from which their intrinsic photoionizations can be directly elucidated by measuring the VUV-MATI spectrum corresponding to each conformer. The observed MATI spectra could be analyzed through Franck-Condon simulations at the B3LYP/cc-pVTZ level for the isobutanal conformers, trans and gauche, for which the adiabatic ionization energies were precisely determined to be 78 133 ± 3 cm-1 (9.6873 ± 0.0004 eV) and 78 557 ± 3 cm-1 (9.7398 ± 0.0004 eV), respectively. Notably, only the gauche conformer undergoes a unique geometrical change upon ionization, resulting in the progression of the CHO torsional mode in the MATI spectra. Consequently, we determined the conformational stabilities of isobutanal by conformer-specific photoionization, given that the gauche is more stable than the trans by 162 ± 50 cm-1 in the neutral ground state, while the cationic gauche is less stable than the cationic trans by 262 ± 50 cm-1.
RESUMO
Anthocyanins, the most prevalent flavonoids in red/purple fruits and vegetables, are known to improve immune responses and reduce chronic disease risks. In this study, the anti-inflammatory activities of an anthocyanin-rich extract from red Chinese cabbage (ArCC) were shown based on its inhibitory effects in cultured endothelial cells and hyperlipidemic apolipoprotein E-deficient mice. ArCC treatment suppressed monocyte adhesion to tumor necrosis factor-α-stimulated endothelial cells. This was validated by ArCC's ability to downregulate the expression and transcription of endothelial adhesion molecules, determined by immunoblot and luciferase promoter assays, respectively. The regulation of adhesion molecules was accompanied by transcriptional inhibition of nuclear factor-κB, which restricted cytoplasmic localization as shown by immunocytochemistry. Administration of ArCC (150 or 300 mg/kg/day) inhibited aortic inflammation in hyperlipidemic apolipoprotein E-deficient mice, as shown by in vivo imaging. Immunohistochemistry and plasma analysis showed that the aortas from these mice exhibited markedly lower leukocyte infiltration, reduced plaque formation, and lower concentrations of blood inflammatory cytokines than those observed in the control mice. The results suggest that the consumption of anthocyanin-rich red Chinese cabbage is closely correlated with lowering the risk of vascular inflammatory diseases.