Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Toxicol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884142

RESUMO

Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1ß/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.

2.
J Biol Chem ; 298(10): 102442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055405

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited ß-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ratos , Terapia Genética
3.
Med Sci Monit ; 29: e939949, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183387

RESUMO

BACKGROUND Self-injection locking (SIL) radar uses continuous-wave radar and an injection-locked oscillator-based frequency discriminator that receives and demodulates radar signals remotely to monitor vital signs. This study aimed to compare SIL radar with traditional electrocardiogram (ECG) measurements to monitor respiratory rate (RR) and heartbeat rate (HR) during the COVID-19 pandemic at a single hospital in Taiwan. MATERIAL AND METHODS We recruited 31 hospital staff members (16 males and 15 females) for respiratory rates (RR) and heartbeat rates (HR) detection. Data acquisition with the SIL radar and traditional ECG was performed simultaneously, and the accuracy of the measurements was evaluated using Bland-Altman analysis. RESULTS To analyze the results, participates were divided into 2 groups (individual subject and multiple subjects) by gender (male and female), or 4 groups (underweight, normal weight, overweight, and obesity) by body mass index (BMI). The results were analyzed using mean bias errors (MBE) and limits of agreement (LOA) with a 95% confidence interval. Bland-Altman plots were utilized to illustrate the difference between the SIL radar and ECG monitor. In all BMI groups, results of RR were more accurate than HR, with a smaller MBE. Furthermore, RR and HR measurements of the male groups were more accurate than those of the female groups. CONCLUSIONS We demonstrated that non-contact SIL radar could be used to accurately measure HR and RR for hospital healthcare during the COVID-19 pandemic.


Assuntos
COVID-19 , Processamento de Sinais Assistido por Computador , Masculino , Humanos , Feminino , Radar , Taiwan/epidemiologia , Pandemias , Sinais Vitais , Frequência Cardíaca , Taxa Respiratória , Hospitais , Algoritmos , Monitorização Fisiológica/métodos
4.
Biomedicines ; 11(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979886

RESUMO

The clinical use of mifepristone for medical abortions has been established in 1987 in France and since 2000 in the United States. Mifepristone has a limited medical period that lasts <9 weeks of gestation, and the incidence of mifepristone treatment failure increases with gestation time. Mifepristone functions as an antagonist for progesterone and glucocorticoid receptors. Studies have confirmed that mifepristone treatments can directly contribute to endometrium disability by interfering with the endometrial receptivity of the embryo, thus causing decidual endometrial degeneration. However, whether mifepristone efficacy directly affects embryo survival and growth is still an open question. Some women choose to continue their pregnancy after mifepristone treatment fails, and some women express regret and seek medically unapproved mifepristone antagonization with high doses of progesterone. These unapproved treatments raise the potential risk of embryonic fatality and developmental anomalies. Accordingly, in the present study, we collected mouse blastocysts ex vivo and treated implanted blastocysts with mifepristone for 24 h. The embryos were further cultured to day 8 in vitro to finish their growth in the early somite stage, and the embryos were then collected for RNA sequencing (control n = 3, mifepristone n = 3). When we performed a gene set enrichment analysis, our data indicated that mifepristone treatment considerably altered the cellular pathways of embryos in terms of viability, proliferation, and development. The data indicated that mifepristone was involved in hallmark gene sets of protein secretion, mTORC1, fatty acid metabolism, IL-2-STAT5 signaling, adipogenesis, peroxisome, glycolysis, E2F targets, and heme metabolism. The data further revealed that mifepristone interfered with normal embryonic development. In sum, our data suggest that continuing a pregnancy after mifepristone treatment fails is inappropriate and infeasible. The results of our study reveal a high risk of fetus fatality and developmental problems when pregnancies are continued after mifepristone treatment fails.

5.
J Inflamm Res ; 16: 4103-4116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745794

RESUMO

Background: Stroke is a common cause of disability and mortality worldwide; however, effective therapy remains limited. In stroke pathogenesis, ischemia/reperfusion injury triggers gliosis and neuroinflammation that further activates matrix metalloproteinases (MMPs), thereby damaging the blood-brain barrier (BBB). Increased BBB permeability promotes macrophage infiltration and brain edema, thereby worsening behavioral outcomes and prognosis. Histone deacetylase 1 (HDAC1) is a repressor of epigenomic gene transcription and participates in DNA damage and cell cycle regulation. Although HDAC1 is deregulated after stroke and is involved in neuronal loss and DNA repair, its role in neuroinflammation and BBB damage remains unknown. Methods: The rats with cerebral ischemia were evaluated in behavioral outcomes, levels of inflammation in gliosis and cytokines, and BBB damage by using an endothelin-1-induced rat model with cerebral ischemia/reperfusion injury. Results: The results revealed that HDAC1 dysfunction could promote BBB damage through the destruction of tight junction proteins, such as ZO-1 and occludin, after stroke in rats. HDAC1 inhibition also increased the levels of astrocyte and microglial gliosis, tumor necrosis factor-alpha, interleukin-1 beta, lactate dehydrogenase, and reactive oxygen species, further triggering MMP-2 and MMP-9 activity. Moreover, modified neurological severity scores for the cylinder test revealed that HDAC1 inhibition deteriorated behavioral outcomes in rats with cerebral ischemia. Discussion: HDAC1 plays a crucial role in ischemia/reperfusion-induced neuroinflammation and BBB damage, thus indicating its potential as a therapeutic target.

6.
Clin Case Rep ; 11(7): e7725, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37484758

RESUMO

Key Clinical Message: Temporal percutaneous transhepatic duodenum drainage (PTDD) seems to be effective in the treatment of postoperative afferent loop syndrome (ALS) following transverse loop colostomy for obstructive colorectal cancer. Abstract: Management of obstructive colorectal cancer still remains a challenge. There are various options with different risks of mortality and mobility for obstructive colorectal cancer. A rare unexpected postoperative ALS following a low anterior resection and transverse loop colostomy for obstructive colorectal cancer is presented in this report. A 64-year-old man had the acute ALS had been noted 10 days after transverse loop colostomy. An option was temporal PTDD treatment in the patient with history of Billroth's operation II for upper gastrointestinal bleeding 30 years ago. Acute ALS was treated by temporal PTDD. The drainage tube for PTDD was not removed until closure of the transverse colostomy 2 months later. The patient recovered uneventfully. Acute ALS after transverse loop colostomy for obstructive colorectal cancer is rare and has never been reported in the literature. The mechanism of acute ALS after construction of a loop colostomy and the treatment strategy of PTDD for acute ALS is presented.

7.
Gene ; 865: 147331, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36871674

RESUMO

Slow skeletal muscle troponin T (TNNT1) as a poor prognostic indicator is upregulated in colon and breast cancers. However, the role of TNNT1 in the disease prognosis and biological functions of hepatocellular carcinoma (HCC) is still unclear. The Cancer Genome Atlas (TCGA), real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to evaluate the TNNT1 expression of human HCC. The impact of TNNT1 levels on disease progression and survival outcome was studied using TCGA analysis. Moreover, the bioinformatics analysis and HCC cell culture were used to investigate the biological functions of TNNT1. Besides, the immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) were used to detect the extracellular TNNT1 of HCC cells and circulating TNNT1 of HCC patients, respectively. The effect of TNNT1 neutralization on oncogenic behaviors and signaling was further validated in the cultured hepatoma cells. In this study, tumoral and blood TNNT1 was upregulated in HCC patients based on the analyses using bioinformatics, fresh tissues, paraffin sections, and serum. From the multiple bioinformatics tools, the TNNT1 overexpression was associated with advanced stage, high grade, metastasis, vascular invasion, recurrence, and poor survival outcome in HCC patients. By the cell culture and TCGA analyses, TNNT1 expression and release were positively correlated with epithelial-mesenchymal transition (EMT) processes in HCC tissues and cells. Moreover, TNNT1 neutralization suppressed oncogenic behaviors and EMT in hepatoma cells. In conclusion, TNNT1 may serve as a non-invasive biomarker and drug target for HCC management. This research finding may provide a new insight for HCC diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Músculo Esquelético/metabolismo , Prognóstico , Troponina T/genética
8.
Environ Pollut ; 327: 121476, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997141

RESUMO

Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.


Assuntos
Neoplasias Colorretais , Dietilexilftalato , Humanos , Plastificantes/análise , Dietilexilftalato/análise , Glicosilação , Sialiltransferases/metabolismo
9.
Viruses ; 14(2)2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35215921

RESUMO

An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China, has created a public health emergency all over the world. The pandemic has caused more than 340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates have been found to play a role in coronavirus binding and infection, the role of cell surface glycans in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1 subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein. Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1 subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit and ACE2.


Assuntos
Carboidratos/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Carboidratos/genética , China , Eritrócitos/metabolismo , Humanos , Ligantes , Polissacarídeos , Análise Serial de Proteínas , Ligação Proteica , SARS-CoV-2/metabolismo , Internalização do Vírus
10.
Psychopharmacology (Berl) ; 239(12): 3805-3818, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36221037

RESUMO

RATIONALE: Clinical reports reveal that scopolamine, an acetylcholine muscarinic receptor antagonist, exerts rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic effects have not been fully identified. OBJECTIVES: The present study examines the cellular mechanisms by which scopolamine produces antidepressant-like effects through its action in the ventrolateral midbrain periaqueductal gray (vlPAG). METHODS: We used a well-established mouse model of depression induced by chronic restraint stress (CRS) exposure for 14 days. Behaviors were tested using the forced swim test (FST), tail suspension test (TST), female urine sniffing test (FUST), novelty-suppressed feeding test (NSFT), and locomotor activity (LMA). Synaptic transmission in the vlPAG was measured by whole-cell patch-clamp recordings. IntravlPAG microinjection was used to pharmacologically verify the signaling cascades of scopolamine in the vlPAG. RESULTS: The results demonstrated that intraperitoneal injection of scopolamine produced antidepressant-like effects in a dose-dependent manner without affecting locomotor activity. CRS elicited depression-like behaviors, whereas intraperitoneal injection of scopolamine alleviated CRS-induced depression-like behaviors. CRS diminished glutamatergic transmission in the vlPAG, while scopolamine reversed the above effects. Moreover, intravlPAG microinjection of the L-type voltage-dependent calcium channel (VDCC) blocker verapamil, tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) antagonist CNQX prevented scopolamine-induced antidepressant-like effects. CONCLUSIONS: Scopolamine ameliorated CRS-elicited depression-like behavior required activation of VDCC, resulting in activity-dependent release of brain-derived neurotrophic factor (BDNF), engaging the TrkB receptor and downstream mTORC1 signaling in the vlPAG.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Substância Cinzenta Periaquedutal , Camundongos , Animais , Feminino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cálcio Tipo L/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Escopolamina/farmacologia , Antagonistas Muscarínicos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores Muscarínicos , Mamíferos/metabolismo
11.
J Pers Med ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35330401

RESUMO

Sialylation of glycoproteins is modified by distinct sialyltransferases such as ST3Gal, ST6Gal, ST6GalNAc, or ST8SIA with α2,3-, α2,6-, or α2,8-linkages. Alteration of these sialyltransferases causing aberrant sialylation is associated with the progression of colon cancer. However, among the ST8- sialyltransferases, the role of ST8SIA6 in colon cancer remains poorly understood. In this study, we explored the involvement of ST8SIA6 in colon cancer using multiple gene databases. The relationship between ST8SIA6 expression and tumor stages/grades was investigated by UALCAN analysis, and Kaplan-Meier Plotter analysis was used to analyze the expression of ST8SIA6 on the survival outcome of colon cancer patients. Moreover, the biological functions of ST8SIA6 in colon cancer were explored using LinkedOmics and cancer cell metabolism gene DB. Finally, TIMER and TISMO analyses were used to delineate ST8SIA6 levels in tumor immunity and immunotherapy responses, respectively. ST8SIA6 downregulation was associated with an advanced stage and poorly differentiated grade; however, ST8SIA6 expression did not affect the survival outcomes in patients with colon cancer. Gene ontology analysis suggested that ST8SIA6 participates in cell surface adhesion, angiogenesis, and membrane vesicle trafficking. In addition, ST8SIA6 levels affected immunocyte infiltration and immunotherapy responses in colon cancer. Collectively, these results suggest that ST8SIA6 may serve as a novel therapeutic target towards personalized medicine for colon cancer.

12.
Genes (Basel) ; 13(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35456435

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with a high mortality. It has been reported that delta-like 1 homologue (DLK1) participates in the tumor microenvironmental remodeling of ccRCC, but the relationship between delta-like 2 homologue (DLK2, a DLK1 homologue) and ccRCC is still unclear. Thus, this study aims to investigate the role of DLK2 in the biological function and disease prognosis of ccRCC using bioinformatics analysis. The TNMplot database showed that DLK2 was upregulated in ccRCC tissues. From the UALCAN analysis, the overexpression of DLK2 was associated with advanced stage and high grade in ccRCC. Moreover, the Kaplan-Meier plotter (KM Plotter) database showed that DLK2 upregulation was associated with poor survival outcome in ccRCC. By the LinkedOmics analysis, DLK2 signaling may participated in the modulation of ccRCC extracellular matrix (ECM), cell metabolism, ribosome biogenesis, TGF-ß signaling and Notch pathway. Besides, Tumor Immune Estimation Resource (TIMER) analysis showed that the macrophage and CD8+ T cell infiltrations were associated with good prognosis in ccRCC patients. Finally, DLK2 overexpression was associated with the reduced macrophage recruitments and the M1-M2 polarization of macrophage in ccRCC tissues. Together, DLK2 may acts as a novel biomarker, even therapeutic target in ccRCC. However, this study lacks experimental validation, and further studies are required to support this viewpoint.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Biologia Computacional , Feminino , Humanos , Neoplasias Renais/metabolismo , Masculino , Prognóstico
13.
Oncotarget ; 9(17): 13167-13180, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568348

RESUMO

Phthalates are widely used as plasticizers. Humans can be exposed to phthalates through ingestion, inhalation, or treatments that release di(2-ethylhexyl) phthalate (DEHP) and its metabolite, mono(2-ehylhexyl) phthalate (MEHP), into the body from polyvinyl chloride-based medical devices. Phthalate exposure may induce reproductive toxicity, liver damage, and carcinogenesis in humans. This study found that colon cancer cells exposed to DEHP or MEHP exhibited increased cell viability and increased levels of P-glycoprotein, CD133, Bcl-2, Akt, ERK, GSK3ß, and ß-catenin when treated with oxaliplatin or irinotecan, as compared to control. The P-glycoprotein inhibitor, tariquidar, which blocks drug efflux, reduced the viability of DEHP- or MEHP-treated, anti-cancer drug-challenged cells. DEHP or MEHP treatment also induced colon cancer cell migration and epithelial-mesenchymal transformation. Elevated stemness-related protein levels (ß-catenin, Oct4, Sox2, and Nanog) and increased cell sphere sizes indicated that DEHP- or MEHP-treated cells were capable of self-renewal. We also found that serum DEHP concentrations were positively correlated with cancer recurrence. These results suggest phthalate exposure enhances colon cancer cell metastasis and chemotherapeutic drug resistance by increasing cancer cell stemness, and that P-glycoprotein inhibitors might improve outcomes for advanced or drug-resistant colon cancer patients.

14.
PLoS One ; 8(11): e82478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303084

RESUMO

Multidrug resistance (MDR), an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC) transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi) on the ß-catenin/GSK-3ß pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, ß-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp), MDR-associated protein (MRP) 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, ß-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3ß, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3ß and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the ß-catenin/GSK-3ß pathway in human colon cancer cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Galectina 3/genética , Inativação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Células CACO-2 , Caspases/genética , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Epirubicina/farmacologia , Epirubicina/toxicidade , Galectina 3/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa