Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
EMBO Rep ; 22(7): e52154, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34047007

RESUMO

Super-resolution imaging has revealed that key synaptic proteins are dynamically organized within sub-synaptic domains (SSDs). To examine how different inhibitory receptors are regulated, we carried out dual-color direct stochastic optical reconstruction microscopy (dSTORM) of GlyRs and GABAA Rs at mixed inhibitory synapses in spinal cord neurons. We show that endogenous GlyRs and GABAA Rs as well as their common scaffold protein gephyrin form SSDs that align with pre-synaptic RIM1/2, thus creating trans-synaptic nanocolumns. Strikingly, GlyRs and GABAA Rs occupy different sub-synaptic spaces, exhibiting only a partial overlap at mixed inhibitory synapses. When network activity is increased by 4-aminopyridine treatment, the GABAA R copy numbers and the number of GABAA R SSDs are reduced, while GlyRs remain largely unchanged. This differential regulation is likely the result of changes in gephyrin phosphorylation that preferentially occurs outside of SSDs. The activity-dependent regulation of GABAA Rs versus GlyRs suggests that different signaling pathways control the receptors' sub-synaptic clustering. Taken together, our data reinforce the notion that the precise sub-synaptic organization of GlyRs, GABAA Rs, and gephyrin has functional consequences for the plasticity of mixed inhibitory synapses.


Assuntos
Receptores de GABA-A , Sinapses , Proteínas de Transporte/genética , Neurônios , Receptores de GABA-A/genética , Medula Espinal
2.
Cell Mol Life Sci ; 78(13): 5341-5370, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34061215

RESUMO

GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.


Assuntos
Eletrofisiologia , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Neurônios/citologia
3.
Neuroimage ; 220: 117069, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585347

RESUMO

Astrocytes are a major type of glial cell in the mammalian brain, essentially regulating neuronal development and function. Quantitative imaging represents an important approach to study astrocytic signaling in neural circuits. Focusing on astrocytic Ca2+ activity, a key pathway implicated in astrocye-neuron interaction, we here report a strategy combining fast light sheet fluorescence microscopy (LSFM) and correlative screening-based time series analysis, to map activity domains in astrocytes in living mammalian nerve tissue. Light sheet of micron-scale thickness enables wide-field optical sectioning to image astrocytes in acute mouse brain slices. Using both chemical and genetically encoded Ca2+ indicators, we demonstrate the complementary advantages of LSFM in mapping Ca2+ domains in astrocyte populations as compared to epifluorescence and two-photon microscopy. Our approach then revealed distinct kinetics of Ca2+ signals between cortical and hypothalamic astrocytes in resting conditions and following the activation of adrenergic G protein coupled receptor (GPCR). This observation highlights the activity heterogeneity across regionally distinct astrocyte populations, and indicates the potential of our method for investigating dynamic signals in astrocytes.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Animais , Camundongos , Microscopia de Fluorescência , Neurônios/fisiologia
4.
J Neurosci ; 38(35): 7667-7682, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30012693

RESUMO

Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons. To address this issue we analyzed, as a model, embryonic Renshaw cell (V1R) activity at the onset of SNA (E12.5) in the embryonic mouse SC (both sexes). V1R are one of the interneurons known to contact MNs, which are generated early in the embryonic SC. Here, we show that V1R already produce GABA in E12.5 embryo, and that V1R make synaptic-like contacts with MNs and have putative extrasynaptic release sites, while paracrine release of GABA occurs at this developmental stage. In addition, we discovered that V1R are spontaneously active during SNA and can already generate several intrinsic activity patterns including repetitive-spiking and sodium-dependent plateau potential that rely on the presence of persistent sodium currents (INap). This is the first demonstration that INap is present in the embryonic SC and that this current can control intrinsic activation properties of newborn interneurons in the SC of mammalian embryos. Finally, we found that 5 µm riluzole, which is known to block INaP, altered SNA by reducing episode duration and increasing inter-episode interval. Because SNA is essential for neuronal maturation, axon pathfinding, and synaptogenesis, the presence of INaP in embryonic SC neurons may play a role in the early development of mammalian locomotor networks.SIGNIFICANCE STATEMENT The developing spinal cord (SC) exhibits spontaneous network activity (SNA) involved in the building of nascent locomotor circuits in the embryo. Many studies suggest that SNA depends on the rhythmic release of GABA, yet intracellular recordings of GABAergic neurons have never been performed at the onset of SNA in the SC. We first discovered that embryonic Renshaw cells (V1R) are GABAergic at E12.5 and spontaneously active during SNA. We uncover a new role for persistent sodium currents (INaP) in driving plateau potential in V1R and in SNA patterning in the embryonic SC. Our study thus sheds light on a role for INaP in the excitability of V1R and the developing SC.


Assuntos
Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Células de Renshaw/fisiologia , Canais de Sódio/fisiologia , Sódio/fisiologia , Medula Espinal/embriologia , Potenciais de Ação , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/citologia , Comunicação Parácrina , Técnicas de Patch-Clamp , Riluzol/farmacologia , Medula Espinal/citologia , Sinapses/fisiologia
5.
Glia ; 66(8): 1678-1694, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29603384

RESUMO

Virtually all oligodendrocyte precursors cells (OPCs) receive glutamatergic and/or GABAergic synapses that are lost upon their differentiation into oligodendrocytes in the postnatal and adult brain. Although OPCs are generated at mid-embryonic stages, several weeks before the onset of myelination, it remains unknown when and where OPCs receive their first synapses and become susceptible to the influence of neuronal activity. In the embryonic spinal cord, neuro-epithelial precursors in the pMN domain cease generating cholinergic motor neurons (MNs) to produce OPCs when the first synapses are formed in the ventral-lateral marginal zone. We discovered that when the first synapses form onto MNs, axoglial synapses also form onto the processes of neuro-epithelial precursors located in the marginal zone as they differentiate into OPCs. After leaving the neuro-epithelium, these pioneer OPCs preferentially accumulate in the marginal zone where they are contacted by functional glutamatergic and GABAergic synapses. Spontaneous activity of these axoglial synapses was significantly potentiated by cholinergic signaling acting through presynaptic nicotinic acetylcholine receptors. Moreover, we discovered that chronic nicotine treatment significantly increases early OPC proliferation and density in the marginal zone. Our results demonstrate that OPCs are contacted by functional synapses as soon as they emerge from their precursor domain and that embryonic spinal cord colonization by OPCs can be regulated by cholinergic signaling acting onto these axoglial synapses.


Assuntos
Axônios/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/metabolismo , Sinapses/patologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Neurônios Motores/metabolismo , Neurogênese/fisiologia , Medula Espinal/metabolismo , Células-Tronco/fisiologia , Sinapses/fisiologia
6.
Glia ; 66(11): 2470-2486, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252950

RESUMO

Microglia are known to regulate several aspects of the development of the central nervous system. When microglia colonize the spinal cord, from E11.5 in the mouse embryo, they interact with growing central axons of dorsal root ganglion sensory neurons (SNs), which suggests that they may have some functions in SN development. To address this issue, we analyzed the effects of embryonic macrophage ablation on the early development of SNs using mouse embryo lacking embryonic macrophages (PU.1 knock-out mice) and immune cell ablation. We discovered that, in addition to microglia, embryonic macrophages contact tropomyosin receptor kinase (Trk) C+ SN, TrkB+ SN, and TrkA+ SN peripheral neurites from E11.5. Deprivation of immune cells resulted in an initial reduction of TrkC+ SN and TrkB+ SN populations at E11.5 that was unlikely to be related to an alteration in their developmental cell death (DCD), followed by a transitory increase in their number at E12.5. It also resulted in a reduction of TrkA+ SN number during the developmental period analyzed (E11.5-E15.5), although we did not observe any change in their DCD. Proliferation of cells negative for brain fatty acid-binding protein (BFABP- ), which likely correspond to neuronal progenitors, was increased at E11.5, while their proliferation was decreased at E12.5, which could partly explain the alterations of SN subtype production observed from E11.5. In addition, we observed alterations in the proliferation of glial cell progenitors (BFABP+ cells) in the absence of embryonic macrophages. Our data indicate that embryonic macrophages and microglia ablation alter the development of SNs.


Assuntos
Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular , Citocinas/metabolismo , Embrião de Mamíferos , Feminino , Galectina 3/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transativadores/genética , Transativadores/metabolismo , Tubulina (Proteína)/metabolismo
7.
Glia ; 65(7): 1072-1088, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28417486

RESUMO

Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5ß1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5ß1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5ß1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5ß1 integrin in microglial migration during colonization of the embryonic brain.


Assuntos
Envelhecimento , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Integrina alfa5beta1/metabolismo , Microglia/fisiologia , Animais , Vasos Sanguíneos/fisiologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Embrião de Mamíferos , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ficoeritrina/metabolismo , Transdução de Sinais/fisiologia
8.
Amino Acids ; 49(3): 671-681, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27236567

RESUMO

Transglutaminase 2 (TG2) has been known for a long time to be associated with the in vivo apoptosis program of various cell types, including T cells. Though the expression of the enzyme is strongly induced in mouse thymocytes following apoptosis induction in vivo, no significant induction of TG2 can be detected, when thymocytes are induced to die by the same stimuli in vitro indicating that signals arriving from the tissue environment are required for the proper in vivo induction of the enzyme. Previous studies from our laboratory have demonstrated that two of these signals, transforming growth factor-ß (TGF-ß) and retinoids, are produced by macrophages engulfing apoptotic cells. However, in addition to TGF-ß and retinoids, engulfing macrophages produce adenosine as well. Here, we show that in vitro adenosine, adenosine, and retinoic acid or adenosine, TGF-ß and retinoic acids together can significantly enhance the TG2 mRNA expression in dying thymocytes. The effect of adenosine is mediated via adenosine A2A receptors (A2ARs) and the A2AR-triggered adenylate cyclase signaling pathway. In accordance, loss of A2ARs in A2AR null mice significantly attenuates the in vivo induction of TG2 following apoptosis induction in the thymus indicating that adenosine indeed contributes in vivo to the apoptosis-related appearance of the enzyme. We also demonstrate that adenosine is produced extracellularly during engulfment of apoptotic thymocytes, partly from adenine nucleotides released via thymocyte pannexin-1 channels. Our data reveal a novel crosstalk between macrophages and apoptotic cells, in which apoptotic cell uptake-related adenosine production contributes to the appearance of TG2 in the dying thymocytes.


Assuntos
Adenosina/farmacologia , Proteínas de Ligação ao GTP/genética , Macrófagos/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Timócitos/efeitos dos fármacos , Transglutaminases/genética , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Comunicação Celular , Técnicas de Cocultura , Proteínas de Ligação ao GTP/agonistas , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais , Timócitos/imunologia , Timócitos/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Transglutaminases/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia
9.
J Neurosci ; 34(18): 6389-404, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790209

RESUMO

A remarkable feature of early neuronal networks is their endogenous ability to generate spontaneous rhythmic electrical activity independently of any external stimuli. In the mouse embryonic SC, this activity starts at an embryonic age of ∼ 12 d and is characterized by bursts of action potentials recurring every 2-3 min. Although these bursts have been extensively studied using extracellular recordings and are known to play an important role in motoneuron (MN) maturation, the mechanisms driving MN activity at the onset of synaptogenesis are still poorly understood. Because only cholinergic antagonists are known to abolish early spontaneous activity, it has long been assumed that spinal cord (SC) activity relies on a core network of MNs synchronized via direct cholinergic collaterals. Using a combination of whole-cell patch-clamp recordings and extracellular recordings in E12.5 isolated mouse SC preparations, we found that spontaneous MN activity is driven by recurrent giant depolarizing potentials. Our analysis reveals that these giant depolarizing potentials are mediated by the activation of GABA, glutamate, and glycine receptors. We did not detect direct nAChR activation evoked by ACh application on MNs, indicating that cholinergic inputs between MNs are not functional at this age. However, we obtained evidence that the cholinergic dependency of early SC activity reflects a presynaptic facilitation of GABA and glutamate synaptic release via nicotinic AChRs. Our study demonstrates that, even in its earliest form, the activity of spinal MNs relies on a refined poly-synaptic network and involves a tight presynaptic cholinergic regulation of both GABAergic and glutamatergic inputs.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Junções Comunicantes/fisiologia , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/citologia , Ácido gama-Aminobutírico/metabolismo , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Colinérgicos/farmacologia , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Gravidez , Tetrodotoxina/farmacologia , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/farmacologia
10.
Med Sci (Paris) ; 30(2): 147-52, 2014 Feb.
Artigo em Francês | MEDLINE | ID: mdl-24572112

RESUMO

Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.


Assuntos
Sistema Nervoso Central/embriologia , Desenvolvimento Embrionário/fisiologia , Microglia/fisiologia , Encéfalo/embriologia , Encéfalo/fisiologia , Morte Celular , Homeostase , Humanos , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia
11.
J Neurosci ; 32(34): 11559-73, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22915101

RESUMO

Microglia are known to invade the mammalian spinal cord (SC) at an early embryonic stage. While the mechanisms underlying this early colonization of the nervous system are still unknown, we recently found that it is associated, at least partially, with the ability of microglia to proliferate at the onset of motoneuron developmental cell death and of synaptogenesis in mouse embryo (E13.5). In vitro studies have shown that the proliferation and activation of adult microglia can be influenced by the purinergic ionotropic receptor P2X7 via a coupling with Pannexin-1. By performing patch-clamp recordings in situ using a whole-mouse embryonic SC preparation, we show here that embryonic microglia already express functional P2X7R. P2X7R activation evoked a biphasic current in embryonic microglia, which is supposed to reflect large plasma membrane pore opening. However, although embryonic microglia express pannexin-1, this biphasic current was still recorded in microglia of pannexin-1 knock-out embryos, indicating that it rather reflected P2X7R intrinsic pore dilatation. More important, we found that proliferation of embryonic SC microglia, but not their activation state, depends almost entirely on P2X7R by comparing wild-type and P2X7R-/- embryos. Absence of P2X7R led also to a decrease in microglia density. Pannexin-1-/- embryos did not exhibit any difference in microglial proliferation, showing that the control of embryonic microglial proliferation by P2X7R does not depend on pannexin-1 expression. These results reveal a developmental role of P2X7R by controlling embryonic SC microglia proliferation at a critical developmental state in the SC of mouse embryos.


Assuntos
Diferenciação Celular/fisiologia , Conexinas/metabolismo , Microglia/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/citologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Antígenos CD/metabolismo , Biofísica , Receptor 1 de Quimiocina CX3C , Caspase 3/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Conexinas/deficiência , Estimulação Elétrica , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Antígeno Ki-67/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Técnicas de Patch-Clamp , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/genética , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/genética , Corantes de Rosanilina , Medula Espinal/crescimento & desenvolvimento
12.
Glia ; 61(2): 150-63, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23001583

RESUMO

Microglia are the immune cells of the central nervous system. They are suspected to play important roles in adult synaptogenesis and in the development of the neuronal network. Microglial cells originate from progenitors in the yolk sac. Although it was suggested that they invade the cortex at early developmental stages in the embryo, their invasion pattern remains largely unknown. To address this issue we analyzed the pattern of cortical invasion by microglial cells in mouse embryos at the onset of neuronal cell migration using in vivo immunohistochemistry and ex vivo time-lapse analysis of microglial cells. Microglial cells begin to invade the cortex at 11.5 days of embryonic age (E11.5). They first accumulate at the pial surface and within the lateral ventricles, after which they spread throughout the cortical wall, avoiding the cortical plate region in later embryonic ages. The invasion of the cortical parenchyma occurs in different phases. First, there is a gradual increase of microglial cells between E10.5 and E14.5. From E14.5 to E15.5 there is a rapid phase with a massive increase in microglia, followed by a slow phase again from E15.5 until E17.5. At early stages, many peripheral microglia are actively proliferating before entering the parenchyma. Remarkably, activated microglia accumulate in the choroid plexus primordium, where they are in the proximity of dying cells. Time-lapse analysis shows that embryonic microglia are highly dynamic cells.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Desenvolvimento Embrionário/fisiologia , Microglia/fisiologia , Fatores Etários , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Movimento Celular , Proliferação de Células , Plexo Corióideo/citologia , Plexo Corióideo/embriologia , Embrião de Mamíferos/anatomia & histologia , Feminino , Galectina 3/metabolismo , Proteínas de Fluorescência Verde/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Neurônios/fisiologia , Gravidez , Receptores de Interleucina-8A/genética
13.
J Neurosci ; 30(1): 390-403, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053920

RESUMO

Rhythmic electrical activity is a hallmark of the developing embryonic CNS and is required for proper development in addition to genetic programs. Neurotransmitter release contributes to the genesis of this activity. In the mouse spinal cord, this rhythmic activity occurs after embryonic day 11.5 (E11.5) as waves spreading along the entire cord. At E12.5, blocking glycine receptors alters the propagation of the rhythmic activity, but the cellular source of the glycine receptor agonist, the release mechanisms, and its function remain obscure. At this early stage, the presence of synaptic activity even remains unexplored. Using isolated embryonic spinal cord preparations and whole-cell patch-clamp recordings of identified motoneurons, we find that the first synaptic activity develops at E12.5 and is mainly GABAergic. Using a multiple approach including direct measurement of neurotransmitter release (i.e., outside-out sniffer technique), we also show that, between E12.5 and E14.5, the main source of glycine in the embryonic spinal cord is radial cell progenitors, also known to be involved in neuronal migration. We then demonstrate that radial cells can release glycine during synaptogenesis. This spontaneous non-neuronal glycine release can also be evoked by mechanical stimuli and occurs through volume-sensitive chloride channels. Finally, we find that basal glycine release upregulates the propagating spontaneous rhythmic activity by depolarizing immature neurons and by increasing membrane potential fluctuations. Our data raise the question of a new role of radial cells as secretory cells involved in the modulation of the spontaneous electrical activity of embryonic neuronal networks.


Assuntos
Glicina/metabolismo , Periodicidade , Medula Espinal/embriologia , Medula Espinal/metabolismo , Potenciais Sinápticos/fisiologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Feminino , Camundongos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Gravidez , Medula Espinal/citologia
14.
Neural Plast ; 2011: 905624, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21785735

RESUMO

γ-aminobutyric acid (GABA) acting on Cl(-)-permeable ionotropic type A (GABA(A)) receptors (GABA(A)R) is the major inhibitory neurotransmitter in the adult central nervous system of vertebrates. In immature brain structures, GABA exerts depolarizing effects mostly contributing to the expression of spontaneous activities that are instructive for the construction of neural networks but GABA also acts as a potent trophic factor. In the present paper, we concentrate on brainstem and spinal motoneurons that are largely targeted by GABAergic interneurons, and we bring together data on the switch from excitatory to inhibitory effects of GABA, on the maturation of the GABAergic system and GABA(A)R subunits. We finally discuss the role of GABA and its GABA(A)R in immature hypoglossal motoneurons of the spastic (SPA) mouse, a model of human hyperekplexic syndrome.


Assuntos
Neurônios Motores/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Cloretos/metabolismo , Glicina/fisiologia , Humanos , Transporte de Íons/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Ratos , Receptores de GABA/fisiologia , Receptores de Glicina/fisiologia
15.
Curr Biol ; 31(21): 4762-4772.e5, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34529937

RESUMO

Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.


Assuntos
Habenula , Terminações Pré-Sinápticas , Animais , Cálcio/metabolismo , Colinérgicos/metabolismo , Habenula/fisiologia , Terminações Pré-Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Elife ; 102021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899737

RESUMO

Renshaw cells (V1R) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic development of the mouse spinal cord locomotor networks (E11.5-E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1R is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1R and control their early developmental trajectory.


Assuntos
Potenciais de Ação , Canais de Potássio de Retificação Tardia/metabolismo , Potássio/metabolismo , Células de Renshaw/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Medula Espinal/metabolismo , Animais , Feminino , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos Transgênicos , Modelos Neurológicos , Morfogênese , Fenótipo , Medula Espinal/embriologia , Teoria de Sistemas , Fatores de Tempo
17.
Curr Biol ; 31(20): 4584-4595.e4, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34478646

RESUMO

In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.


Assuntos
Neurônios Motores , Medula Espinal , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio , Junções Comunicantes , Camundongos , Neurônios Motores/fisiologia , Medula Espinal/fisiologia
18.
Sci Rep ; 10(1): 15338, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948826

RESUMO

While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.


Assuntos
Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Medula Espinal/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Embrião não Mamífero , Larva/metabolismo , Neurônios Motores/metabolismo , Neurônios/fisiologia , Neurotransmissores/metabolismo , Medula Espinal/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
19.
Eur J Neurosci ; 30(6): 1077-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19723286

RESUMO

Glycine receptor (GlyR) alpha3 is involved in vision, and processing of acoustic and nociceptive signals, and RNA editing of GLRA3 transcripts was associated with hippocampal pathophysiology of mesial temporal lobe epilepsy (TLE). However, neither the role of GlyR alpha3 splicing in hippocampal neurons nor the expression of splice variants have yet been elucidated. We report here that the long (L) splice variant of GlyR alpha3 predominates in the brain of rodents. Cellular analysis using primary hippocampal neurons and hippocampus cryosections revealed preferential association of synaptic alpha3L clusters with glutamatergic nerve endings in strata granulare and pyramidale. In primary hippocampal neurons GlyR alpha3L clusters also preferred glutamatergic nerve endings while alpha3K was mainly in a diffuse state. Co-expression of GlyR beta subunit with alpha3L or alpha3K produced heteromeric receptor clusters and favoured their association with GABAergic terminals. However, heteromeric alpha3L was still more efficient than heteromeric alpha3K in associating with glutamatergic nerve endings. To give physiological relevance to these results we have finally analysed GlyR alpha3 splicing in human hippocampus obtained from patients with intractable TLE. As up-regulation of alpha3K occurred at the expense of alpha3L in TLE patients with a severe course of disease and a high degree of hippocampal damage, our results again involve post-transcriptional processing of GLRA3 transcripts in the pathophysiology of TLE.


Assuntos
Hipocampo/fisiologia , Receptores de Glicina/fisiologia , Animais , Western Blotting , Células Cultivadas , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Imunofluorescência , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Microscopia Confocal , Neurônios/metabolismo , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Transfecção , Regulação para Cima
20.
Prog Neurobiol ; 178: 101612, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954517

RESUMO

In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.


Assuntos
Movimento Celular/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Microglia/fisiologia , Fagocitose/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa