Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant J ; 117(6): 1781-1785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37873939

RESUMO

Plants and ecosystems worldwide are exposed to a wide range of chemical, physical, and biological factors of global change, many of which act concurrently. As bringing order to the array of factors is required in order to generate an enhanced understanding of simultaneous impacts, classification schemes have been developed. One such classification scheme is dedicated to capturing the different targets of global change factors along the ecological hierarchy. We build on this pioneering work, and refine the conceptual framework in several ways, focusing on plants and terrestrial systems: (i) we more strictly define the target level of the hierarchy, such that every factor typically has just one target level, and not many; (ii) we include effects above the level of the community, that is, there are effects also at the ecosystem scale that cannot be reduced to any level below this; (iii) we introduce the level of the landscape to capture certain land use change effects while abandoning the level below the individual. We discuss how effects can propagate along the levels of the ecological hierarchy, upwards and downwards, presenting opportunities for explaining non-additivity of effects of multiple factors. We hope that this updated conceptual framework will help inform the next generation of plant-focused global change experiments, specifically aimed at non-additivity of effects at the confluence of many factors.


Assuntos
Ecossistema
2.
Glob Chang Biol ; 30(7): e17409, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978455

RESUMO

Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying.


Assuntos
Secas , Micorrizas , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Biomassa
3.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822568

RESUMO

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , Ecologia/métodos , Mudança Climática
4.
Glob Chang Biol ; 30(7): e17438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054882

RESUMO

Plants and their symbionts, such as arbuscular mycorrhizal (AM) fungi, are increasingly subjected to various environmental stressors due to climate change, including drought. As a response to drought, plants generally allocate more biomass to roots over shoots, thereby facilitating water uptake. However, whether this biomass allocation shift is modulated by AM fungi remains unknown. Based on 5691 paired observations from 154 plant species, we conducted a meta-analysis to evaluate how AM fungi modulate the responses of plant growth and biomass allocation (e.g., root-to-shoot ratio, R/S) to drought. We found that AM fungi attenuate the negative impact of drought on plant growth, including biomass production, photosynthetic performance and resource (e.g. nutrient and water) uptake. Accordingly, drought significantly increased R/S in non-inoculated plants, but not in plants symbiotic with established AM fungal symbioses. These results suggest that AM fungi promote plant growth and stabilize their R/S through facilitating nutrient and water uptake in plants under drought. Our findings highlight the crucial role of AM fungi in enhancing plant resilience to drought by optimizing resource allocation. This knowledge opens avenues for sustainable agricultural practices that leverage symbiotic relationships for climate adaptation.


Assuntos
Biomassa , Secas , Micorrizas , Desenvolvimento Vegetal , Simbiose , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Mudança Climática , Fotossíntese , Água/metabolismo
5.
Ecol Lett ; 26(12): 2087-2097, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794719

RESUMO

Land plants play a key role in global carbon cycling, but the potential role of arbuscular mycorrhizal fungi (AMF) in the responses of a wide range of plant species to global change factors (GCFs) remains limited. Based on 1100 paired observations from 181 plant species, we conducted a meta-analysis to test the role of AMF in plant responses to four GCFs: drought, warming, nitrogen (N) addition and elevated CO2 . We show that AMF significantly ameliorate the negative effects of drought on plant performance. The GCFs N addition and elevated CO2 significantly enhance the performance of AM plants but not of non-inoculated plants. AM plants show better performance than their non-inoculated counterparts under warming, although neither of them showed a significant response to this GCF. These results suggest that AMF benefit plants in response to GCFs. Our study highlights the importance of AMF in enhancing plant performance under ongoing global change.


Assuntos
Micorrizas , Dióxido de Carbono , Fungos , Plantas , Secas , Nitrogênio
6.
Glob Chang Biol ; 29(7): 1971-1983, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36607159

RESUMO

Nitrogen (N) availability has been considered as a critical factor for the cycling and storage of soil organic carbon (SOC), but effects of N enrichment on the SOC pool appear highly variable. Given the complex nature of the SOC pool, recent frameworks suggest that separating this pool into different functional components, for example, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), is of great importance for understanding and predicting SOC dynamics. Importantly, little is known about how these N-induced changes in SOC components (e.g., changes in the ratios among these fractions) would affect the functionality of the SOC pool, given the differences in nutrient density, resistance to disturbance, and turnover time between POC and MAOC pool. Here, we conducted a global meta-analysis of 803 paired observations from 98 published studies to assess the effect of N addition on these SOC components, and the ratios among these fractions. We found that N addition, on average, significantly increased POC and MAOC pools by 16.4% and 3.7%, respectively. In contrast, both the ratios of MAOC to SOC and MAOC to POC were remarkably decreased by N enrichment (4.1% and 10.1%, respectively). Increases in the POC pool were positively correlated with changes in aboveground plant biomass and with hydrolytic enzymes. However, the positive responses of MAOC to N enrichment were correlated with increases in microbial biomass. Our results suggest that although reactive N deposition could facilitate soil C sequestration to some extent, it might decrease the nutrient density, turnover time, and resistance to disturbance of the SOC pool. Our study provides mechanistic insights into the effects of N enrichment on the SOC pool and its functionality at global scale, which is pivotal for understanding soil C dynamics especially in future scenarios with more frequent and severe perturbations.


Assuntos
Carbono , Solo , Nitrogênio/análise , Biomassa , Plantas , Minerais , Poeira
7.
Environ Sci Technol ; 57(48): 19849-19859, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37978924

RESUMO

Soils are under the threat of a multitude of anthropogenic factors affecting the complex interplay of various physical and hydrological soil processes and properties. One such factor is the group of surface-active compounds. Surfactants have a broad range of applications and can reduce solid-liquid interfacial forces and increase wettability and dispersion of particles. Surfactant effects are context-dependent, giving rise to a wide range of reported effects on different soil processes and properties. Here, we evaluate the evidence base of surfactant research on 11 hydrological and physical soil variables. Our goal was to identify knowledge gaps and test the robustness of the proposed surfactant effects. We found that the current knowledge base is insufficient to reach strong data-backed conclusions about the effects of surfactants in soils. We identified a unique case of bias in the data as a result of conflated patterns from laboratory and field studies. We could not support the hypothesis that the surfactant charge determines soil effects for any of the tested soil variables. We believe that further experiments on surfactant-mediated effects on soil properties and processes are urgently required, paying attention, in particular, to improving experimental design and data reporting standards.


Assuntos
Poluentes do Solo , Solo , Tensoativos , Molhabilidade , Humanos , Fenômenos Físicos , Solo/química , Poluentes do Solo/química , Tensoativos/química
8.
Environ Microbiol ; 24(7): 2962-2978, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437880

RESUMO

During the last few decades, a plethora of sequencing studies provided insight into fungal community composition under various environmental conditions. Still, the mechanisms of species assembly and fungal spread in soil remain largely unknown. While mycelial growth patterns are studied extensively, the abundant formation of asexual spores is often overlooked, though representing a substantial part of the fungal life cycle relevant for survival and dispersal. Here, we explore asexual sporulation (spore abundance, size and shape) in 32 co-occurring soil fungal isolates under varying resource conditions, to answer the question whether resource limitation triggers or inhibits fungal investment into reproduction. We further hypothesized that trade-offs exist in fungal investment towards growth, spore production and size. The results revealed overall increased fungal investment into spore production under resource limitations; however, effect sizes and response types varied strongly among fungal isolates. Such isolate-specific effects were apparent in all measured traits, resulting in unique trait spaces of individual isolates. This comprehensive dataset also elucidated variability in sporulation strategies and trade-offs with fungal growth and reproduction under resource scarcity, as only predicted by theoretical models before. The observed isolate-specific strategies likely underpin mechanisms of co-existence in this diverse group of saprobic soil fungi.


Assuntos
Reprodução Assexuada , Solo , Fungos , Fenótipo , Reprodução/fisiologia , Esporos Fúngicos/genética
9.
Conserv Biol ; 36(5): e13930, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35510330

RESUMO

Soil biodiversity and related ecosystem functions are neglected in most biodiversity assessments and nature conservation actions. We examined how society, and particularly policy makers, have addressed these factors worldwide with a focus on Europe and explored the role of soils in nature conservation in Germany as an example. We reviewed past and current global and European policies, compared soil ecosystem functioning in- and outside protected areas, and examined the role of soils in nature conservation management via text analyses. Protection and conservation of soil biodiversity and soil ecosystem functioning have been insufficient. Soil-related policies are unenforceable and lack soil biodiversity conservation goals, focusing instead on other environmental objectives. We found no evidence of positive effects of current nature conservation measures in multiple soil ecosystem functions in Europe. In German conservation management, soils are considered only from a limited perspective (e.g., as physicochemical part of the environment and as habitat for aboveground organisms). By exploring policy, evidence, and management as it relates to soil ecosystems, we suggest an integrative perspective to move nature conservation toward targeting soil ecosystems directly (e.g., by setting baselines, monitoring soil threats, and establishing a soil indicator system).


La biodiversidad del suelo y las funciones ambientales relacionadas se dejan de lado en la mayoría de las evaluaciones de la biodiversidad y de las acciones de conservación de la naturaleza. Analizamos cómo la sociedad, y particularmente los formuladores de políticas, han abordado estos factores a nivel mundial con un enfoque en Europa y exploramos como ejemplo el papel de los suelos en la conservación de la naturaleza en Alemania. Revisamos las políticas mundiales y europeas en el pasado y en la actualidad, comparamos el funcionamiento ambiental del suelo dentro y fuera de las áreas protegidas y examinamos el papel de los suelos en la gestión de la conservación por medio del análisis de textos. La protección y la conservación de la biodiversidad y el funcionamiento ambiental del suelo han sido insuficientes. Las políticas relacionadas con el suelo son inaplicables y carecen de objetivos de conservación para su biodiversidad, pues se enfocan más bien en otros objetivos ambientales. No descubrimos evidencias de los efectos positivos de las medidas actuales de conservación en múltiples funciones ambientales del suelo en Europa. En la gestión alemana de la conservación, los suelos sólo se consideran desde una perspectiva limitada (p. ej.: como una parte físico química del ambiente y como hábitat para los organismos que habitan por encima de él). Mediante la exploración de la política, evidencias y gestión conforme se relaciona con los ecosistemas del suelo, sugerimos una perspectiva integrada para dirigir a la conservación hacia el enfoque directo sobre los ecosistemas del suelo (p. ej.: al establecer líneas base, monitorear las amenazas para el suelo y establecer un sistema indicador del suelo).


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Solo , Ecossistema , Europa (Continente)
10.
Cell Mol Life Sci ; 78(7): 3637-3656, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33555391

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


Assuntos
Antígenos CD59/metabolismo , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Triexosilceramidas/metabolismo , Transporte Biológico , Antígenos CD59/genética , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Proteínas de Membrana/genética , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais
11.
New Phytol ; 232(4): 1535-1539, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482557

RESUMO

Plant-soil systems are key for understanding the effects of factors of global change. Recent work has highlighted the general importance of considering the simultaneous incidence of some factors or stressors. To help mechanistically dissect the possible interactions of such factors, we here propose three broad groups of mechanisms that may generally lead to nonadditivity of responses within a plant-soil system: direct factor interactions (that is one factor directly changing another), within-plant information processing and crosstalk, and effects of factors on groups of soil biota interacting with plants. Interactions are also possible within and across these groups. Factor interactions are very likely to be present in experiments, especially when dealing with an increasing number of factors. Identifying the nature of such interactions will be essential for understanding and predicting global change impacts on plants and soil.


Assuntos
Plantas , Solo , Biota , Microbiologia do Solo
12.
Glob Chang Biol ; 27(11): 2273-2278, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660892

RESUMO

Human activity is affecting every ecosystem on Earth, with terrestrial biodiversity decreasing rapidly. Human influences materialize in the form of numerous, jointly acting factors, yet the experimental study of such joint impacts is not well developed. We identify the absence of a systematic ordering system of factors according to their properties (traits) as an impediment to progress and offer an a priori trait-based factor classification to illustrate this point, starting at the coarsest level with the physical, biological or chemical nature of factors. Such factor classifications can serve in communication of science, but also can be used as heuristic tools to develop questions and formulate new hypotheses, or as predictors of effects, which we explore here. We hope that classifications such as the one proposed here can help shift the spotlight on the multitude of anthropogenic changes affecting ecosystems, and that such classifications can be used to help unravel joint impacts of a great number of factors.


Assuntos
Biodiversidade , Ecossistema , Planeta Terra , Atividades Humanas , Humanos
13.
Environ Microbiol ; 22(8): 3548-3560, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558213

RESUMO

The dependency of microbial activity on nutrient availability in soil is only partly understood, but highly relevant for nutrient cycling dynamics. In order to achieve more insight on microbial adaptations to nutrient limiting conditions, precise physiological knowledge is needed. Therefore, we developed an experimental system assessing traits of 16 saprobic fungal isolates in nitrogen (N) limited conditions. We tested the hypotheses that (1) fungal traits are negatively affected by N deficiency to a similar extent and (2) fungal isolates respond in a phylogenetically conserved fashion. Indeed, mycelial density, spore production and fungal activity (respiration and enzymatic activity) responded similarly to limiting conditions by an overall linear decrease. By contrast, mycelial extension and hyphal elongation peaked at lowest N supply (C:N 200), causing maximal biomass production at intermediate N contents. Optimal N supply rates differed among isolates, but only the extent of growth reduction was phylogenetically conserved. In conclusion, growth responses appeared as a switch from explorative growth in low nutrient conditions to exploitative growth in nutrient-rich patches, as also supported by responses to phosphorus and carbon limitations. This detailed trait-based pattern will not only improve fungal growth models, but also may facilitate interpretations of microbial responses observed in field studies.


Assuntos
Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Nutrientes/deficiência , Solo/química , Esporos Fúngicos/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Fungos/genética , Nitrogênio/análise , Nitrogênio/deficiência , Fósforo/análise , Fósforo/deficiência , Microbiologia do Solo
14.
New Phytol ; 227(6): 1610-1614, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32147825

RESUMO

A recent study by Sugiura and coworkers reported the non-symbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology.


Assuntos
Glomeromycota , Micorrizas , Ecossistema , Fungos , Miristatos , Ácido Mirístico , Raízes de Plantas , Simbiose
15.
New Phytol ; 223(3): 1066-1070, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30883812

RESUMO

Microplastic effects in terrestrial ecosystems have recently moved into focus, after about a decade of research being limited to aquatic systems. While effects on soil physical properties and soil biota are starting to become apparent, there is not much information on the consequences for plant performance. We here propose and discuss mechanistic pathways through which microplastics could impact plant growth, either positively or negatively. These effects will vary as a function of plant species, and plastic type, and thus are likely to translate to changes in plant community composition and perhaps primary production. Our mechanistic framework serves to guide ongoing and future research on this important topic.


Assuntos
Microplásticos/toxicidade , Plantas/metabolismo , Ecossistema , Inocuidade dos Alimentos , Microbiota , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Plantas/efeitos dos fármacos , Solo
16.
New Phytol ; 222(1): 543-555, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30372522

RESUMO

Increasing grain yields of food cereal crops is a major goal in future sustainable agriculture. We quantitatively analyzed the potential role of arbuscular mycorrhizal (AM) fungi in enhancing grain yields of seven cereal crops with exceptional importance for human nutrition across the globe: corn, wheat, rice, barley, sorghum, millet and oat. We conducted a meta-analysis for three datasets including both English and Chinese language publications: the 'whole' dataset including both laboratory and field studies (168 articles); the 'field' dataset comprising only field studies (97 studies); and the 'field-inoculation' dataset including only AM fungal inoculation studies conducted in field conditions (70 articles). We found that the AM fungal effect on grain yield was less pronounced in field and noninoculation studies. AM fungal inoculation in field led to a 16% increase (overall effect) based on the 'field-inoculation' dataset; this effect was variable (77% trials had positive values), crop-specific, lower for new cultivars released after 1950 and further modulated by soil pH. Although there are neutral and negative effects of AM fungi on grain yields, we emphasize the importance of integrating AM fungi in sustainable agriculture to increase grain yields of cereal crops.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Micorrizas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Bases de Dados como Assunto
17.
Environ Chem ; 16(1): 3-7, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31231167

RESUMO

Microplastic pollution is increasingly considered to be a factor of global change: in addition to aquatic ecosystems, this persistent contaminant is also found in terrestrial systems and soils. Microplastics have been chiefly examined in soils in terms of the presence and potential effects on soil biota. Given the persistence and widespread distribution of microplastics, it is also important to consider potential evolutionary implications of the presence of microplastics in soil; we offer such a perspective for soil microbiota. We discuss the range of selection pressures likely to act upon soil microbes, highlight approaches for the study of evolutionary responses to microplastics, and present the obstacles to be overcome. Pondering the evolutionary consequences of microplastics in soils can yield new insights into the effects of this group of pollutants, including establishing 'true' baselines in soil ecology, and understanding future responses of soil microbial populations and communities.

18.
New Phytol ; 218(1): 322-334, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29281758

RESUMO

The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture.


Assuntos
Produtos Agrícolas/microbiologia , Domesticação , Micorrizas/fisiologia , Simbiose , Produtos Agrícolas/efeitos dos fármacos , Análise dos Mínimos Quadrados , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Fósforo/farmacologia , Filogenia , Simbiose/efeitos dos fármacos
19.
Environ Sci Technol ; 52(17): 9656-9665, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053368

RESUMO

Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems.


Assuntos
Poluentes do Solo , Solo , Ecossistema , Poluição Ambiental , Plásticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa