Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(12): 3256-3266.e13, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34048699

RESUMO

Northern East Asia was inhabited by modern humans as early as 40 thousand years ago (ka), as demonstrated by the Tianyuan individual. Using genome-wide data obtained from 25 individuals dated to 33.6-3.4 ka from the Amur region, we show that Tianyuan-related ancestry was widespread in northern East Asia before the Last Glacial Maximum (LGM). At the close of the LGM stadial, the earliest northern East Asian appeared in the Amur region, and this population is basal to ancient northern East Asians. Human populations in the Amur region have maintained genetic continuity from 14 ka, and these early inhabitants represent the closest East Asian source known for Ancient Paleo-Siberians. We also observed that EDAR V370A was likely to have been elevated to high frequency after the LGM, suggesting the possible timing for its selection. This study provides a deep look into the population dynamics of northern East Asia.


Assuntos
Dinâmica Populacional , DNA Antigo/análise , Ásia Oriental , Feminino , Variação Genética , Genética Populacional , Genoma Humano , Geografia , Humanos , Camada de Gelo , Funções Verossimilhança , Masculino , Modelos Genéticos , Filogenia , Análise de Componente Principal , Fatores de Tempo
2.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840048

RESUMO

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Assuntos
Variação Genética , Seleção Genética , Sequenciamento Completo do Genoma , Bovinos/genética , Animais , Sequenciamento Completo do Genoma/métodos , Desequilíbrio de Ligação , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Genoma , Genética Populacional , Cruzamento , Locos de Características Quantitativas , Fenótipo
3.
BMC Genomics ; 25(1): 201, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383305

RESUMO

To gain a deeper understanding of the metabolic differences within and outside the body, as well as changes in transcription levels following estrus in yaks, we conducted transcriptome and metabolome analyses on female yaks in both estrus and non-estrus states. The metabolome analysis identified 114, 13, and 91 distinct metabolites in urine, blood, and follicular fluid, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted an enrichment of pathways related to amino acid and lipid metabolism across all three body fluids. Our transcriptome analysis revealed 122 differentially expressed genes within microRNA (miRNA) and 640 within long non-coding RNA (lncRNA). Functional enrichment analysis of lncRNA and miRNA indicated their involvement in cell signaling, disease resistance, and immunity pathways. We constructed a regulatory network composed of 10 lncRNAs, 4 miRNAs, and 30 mRNAs, based on the targeted regulation relationships of the differentially expressed genes. In conclusion, the accumulation of metabolites such as amino acids, steroids, and organic acids, along with the expression changes of key genes like miR-129 during yak estrus, provide initial insights into the estrus mechanism in yaks.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Bovinos , Líquido Folicular , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Estro/genética , Redes Reguladoras de Genes
4.
Anim Genet ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726735

RESUMO

Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.

5.
Anim Genet ; 55(1): 140-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994172

RESUMO

Dezhou donkey is one of the representative local breeds in China, which is mainly divided into two strains: Sanfen and Wutou. There are obvious differences in coat color between the two strains. The former shows light points around the eyes, around the muzzle and under the belly, while the latter is completely solid black. In this study, genome-wide association analysis was performed for the differences in coat color traits between the Sanfen (n = 97) and Wutou (n = 108) strains using a novel donkey 40K liquid chip developed based on GenoBaits technology, to identify genomic regions and causal genes that could explain this variation. We also used FST and The cross-population composite likelihood ratio test (XPCLR) analyses to explore selected regions related to coat color differences. We identified one significant region on chromosome 15, with the most significant SNP located within the agouti signaling protein (ASIP) gene. At the same time, both FST and XPCLR methods detected the same selected region on chromosome 15, and ASIP was the gene with the strongest signal. ASIP and melanocortin 1 receptor (MC1R) control the ratio of eumelanin to pheomelanin through their protein activity. They are deeply involved in the process of melanosome organation and melanogenesis, thus affecting mammals' coat color variation. We used a range of genome-wide approach to identify the genetic basis of coat color variation in Dezhou donkeys. The results provide a supplement to the color variation study in Chinese donkeys at the genome-wide level, and preliminarily verified the reliability of the Molbreeding Donkey No. 1 40K liquid chip.


Assuntos
Equidae , Estudo de Associação Genômica Ampla , Animais , Equidae/genética , Reprodutibilidade dos Testes , Radioisótopos de Potássio
6.
Anim Genet ; 55(3): 352-361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436096

RESUMO

Local species exhibit distinctive indigenous characteristics while showing unique productive and phenotypic traits. However, the advent of commercialization has posed a substantial threat to the survival of indigenous species. Anxi cattle, an endangered native breed in China, have evolved unique growth and reproductive characteristics in extreme desert and semidesert ecosystems. In this study, we conducted a genomic comparison of 10 Anxi cattle genomes with those of five other global populations/breeds to assess genetic diversity and identify candidate genomic regions in Anxi cattle. Population structure and genetic diversity analyses revealed that Anxi cattle are part of the East Asian cattle clade, exhibiting higher genetic diversity than commercial breeds. Through selective sweep analysis, we identified specific genetic variations linked to the environmental adaptability of Anxi cattle. Notably, we identified several candidate genes, including CERS3 involved in regulating skin permeability and antimicrobial functions, RBFOX2 associated with cardiac development, SLC16A7 participated in the regulation of pancreatic endocrine function, and SPATA3 related to reproduction. Our findings revealed the distinctive genomic features of Anxi cattle in dryland environments, provided invaluable insights for further research and breed preservation, and had important significance for enriching the domestic cattle breeding gene bank.


Assuntos
Espécies em Perigo de Extinção , Animais , Bovinos/genética , China , Cruzamento , Variação Genética , Genoma , Adaptação Fisiológica/genética
7.
Anim Genet ; 55(3): 362-376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480515

RESUMO

Qaidam cattle are a typical Chinese native breed inhabiting northwest China. They bear the characteristics of high cold and roughage tolerance, low-oxygen adaptability and good meat quality. To analyze the genetic diversity of Qaidam cattle, 60 samples were sequenced using whole-genome resequencing technology, along with 192 published sets of whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, North Chinese cattle breeds, East Asian taurine cattle, Eurasian taurine cattle and European taurine cattle as controls. It was found that Qaidam cattle have rich genetic diversity in Bos taurus, but the degree of inbreeding is also high, which needs further protection. The phylogenetic analysis, principal component analysis and ancestral component analysis showed that Qaidam cattle mainly originated from East Asian taurine cattle. Qaidam cattle had a closer genetic relationship with the North Chinese cattle breeds and the least differentiation from Mongolian cattle. Annotating the selection signals obtained by composite likelihood ratio, nucleotide diversity analysis, integrated haplotype score, genetic differentiation index, genetic diversity ratio and cross-population extended haplotype homozygosity methods, several genes associated with immunity, reproduction, meat, milk, growth and adaptation showed strong selection signals. In general, this study provides genetic evidence for understanding the germplasm characteristics of Qaidam cattle. At the same time, it lays a foundation for the scientific and reasonable protection and utilization of genetic resources of Chinese local cattle breeds, which has great theoretical and practical significance.


Assuntos
Variação Genética , Seleção Genética , Sequenciamento Completo do Genoma , Animais , Bovinos/genética , China , Sequenciamento Completo do Genoma/veterinária , Filogenia , Cruzamento , Haplótipos
8.
Anim Genet ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806279

RESUMO

Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.

9.
Anim Biotechnol ; 35(1): 2314104, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38426908

RESUMO

Previous researches revealed a copy number variation (CNV) region in the bovine fibroblast growth factor 13 (FGF13) gene. However, its effects remain unknown. This study detected the various copy number types in seven Chinese cattle breeds and analysed their population genetic characteristics and effects on growth traits and transcription levels. Copy number Loss was more frequent in Caoyuan Red cattle and Xianan cattle than in the other breeds. Association analysis between CNV and growth traits of Qinchuan indicated that the CNV was significantly related to chest depth, hip width and hucklebone width (P < 0.05). Additionally, the growth traits of individuals with copy number Loss were significantly inferior to those with copy number Gain or Median (P < 0.05). Besides, we found two splicing isoforms, AS1 and AS2, in FGF13 gene, which resulted from alternative 5' splicing sites of intron 1. These isoforms showed varied expression levels in various tissues. Moreover, CNV was significantly and negatively associated with the mRNA expression of AS1 (r = -0.525, P < 0.05). The CNVs in bovine FGF13 gene negatively regulated growth traits and gene transcription. These observations provide new insights into bovine FGF13 gene, delivering potentially useful information for future Chinese cattle breeding programs.


Assuntos
Processamento Alternativo , Variações do Número de Cópias de DNA , Fatores de Crescimento de Fibroblastos , Humanos , Animais , Bovinos/genética , Variações do Número de Cópias de DNA/genética , Processamento Alternativo/genética , Fenótipo , Isoformas de Proteínas/genética
10.
Anim Biotechnol ; 35(1): 2299944, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38164963

RESUMO

Cattle are sensitive to temperature fluctuations but adapt well to inclement weather conditions. When environmental temperatures exceed specific thresholds, heat stress becomes a critical concern for cattle. The TRPM2 gene, which resides on cattle chromosome 1 encodes a TRP channel protein, holding a unique capacity to sense temperature changes and facilitate rapid response to avoid heat stress. Here, we utilized the Bovine Genome Variation Database (BGVD) (http://animal.omics.pro/code/index.php/BosVar), and identified a missense mutation site, c.805A > G: p. Met269Val (rs527146862), within the TRPM2 gene. To elucidate the functional assessment of this mutation in temperature adaptation attributes of Chinese cattle, we genotyped 407 samples from 20 distinct breeds representing diverse climatic zones across China. The association analysis incorporates three temperature parameters and revealed compelling insights in terms of allele frequency. Interestingly, the prevalence of the wild-type allele A was notably higher among northern cattle breeds and this trend diminished gradually as observed in southern cattle populations. Conversely, the mutant-type allele G demonstrated a contrasting trend. Moreover, southern cattle exhibited markedly higher frequencies of GG and GA genotypes (P < 0.01). The presence of heterozygous and homozygous mutations appears to confer an enhanced capacity for adaptation to elevated temperatures. These results provide unequivocal correlation evidence between TRPM2 genotypes (AA, GA, GG) and environmental temperature parameters and comprehend the genetic mechanisms governing temperature adaptation in cattle. This provides valuable insights for strategic breed selection across diverse climatic regions, thereby aiding livestock production amid evolving climate challenges.


The TRPM2 gene encodes TRP channel protein that helps animals in combating heat stress. Twenty Chinese local cattle breeds were genotyped, and association analysis was performed. This investigation encompasses the distribution pattern of the missense mutation locus rs527146862 of the TRPM2 gene in southern, northern, and central cattle populations. The results demonstrated a significant relationship between rs527146862 locus and temperature adaptation attributes in Chinese cattle.


Assuntos
Canais de Cátion TRPM , Bovinos/genética , Animais , Temperatura , Canais de Cátion TRPM/genética , Frequência do Gene , Genótipo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
11.
BMC Genomics ; 24(1): 179, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020271

RESUMO

BACKGROUD: The single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) are two major genomic variants, which play crucial roles in evolutionary and phenotypic diversity. RESULTS: In this study, we performed a comprehensive analysis to explore the genetic variations (SNPs and CNVs) of high sperm motility (HSM) and poor sperm motility (PSM) Simmental bulls using the high-coverage (25×) short-read next generation sequencing and single-molecule long reads sequencing data. A total of ~ 15 million SNPs and 2,944 CNV regions (CNVRs) were detected in Simmental bulls, and a set of positive selected genes (PSGs) and CNVRs were found to be overlapped with quantitative trait loci (QTLs) involving immunity, muscle development, reproduction, etc. In addition, we detected two new variants in LEPR, which may be related to the artificial breeding to improve important economic traits. Moreover, a set of genes and pathways functionally related to male fertility were identified. Remarkably, a CNV on SPAG16 (chr2:101,427,468 - 101,429,883) was completely deleted in all poor sperm motility (PSM) bulls and half of the bulls in high sperm motility (HSM), which may play a crucial role in the bull-fertility. CONCLUSIONS: In conclusion, this study provides a valuable genetic variation resource for the cattle breeding and selection programs.


Assuntos
Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Masculino , Bovinos , Animais , Motilidade dos Espermatozoides , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
12.
PLoS Biol ; 18(12): e3001025, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351795

RESUMO

Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.


Assuntos
Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas , Células da Granulosa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Folículo Ovariano/fisiologia , Ovário/citologia , Gravidez , Análise de Célula Única/métodos , Transcriptoma/genética
13.
Heredity (Edinb) ; 130(6): 394-401, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37016135

RESUMO

Ear size is a classical model for hot climate adaptation following the evolution, but the genetic basis of the traits associated with ear size remains to be elucidated. Here, we performed a genome-wide association study on 158 cattle to explain the genetic mechanism of ear size. One region on BTA6 between 36.79 and 38.80 Mb included 50 suggestive SNPs and 4 significant SNPs that were significantly associated with ear size. The most significant locus (P = 1.30 × 10-8) was a missense mutation (T250I) on the seventh exon of integrin-binding sialoprotein (IBSP), which had an allele substitution effect of 23.46 cm2 for ear size. Furthermore, this mutation will cause changes in the three-dimensional structure of the protein. To further identify genes underlying this typical feature, we performed a genome scan among nine cattle breeds with different ear sizes by using SweeD. Results suggested that IBSP was under positive selection among four breeds with relatively large ear sizes. The expression levels of IBSP in ear tissues of large- and small-ear cattle were significantly different. A haplotype diversity survey of this missense mutation in worldwide cattle breeds strongly implied that the origin of this missense mutation event was Bos taurus. These findings have important theoretical importance for the exploration of major genes associated with ear size and provide important molecular markers for the identification of cattle germplasm resources.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/métodos , Sialoproteína de Ligação à Integrina , Haplótipos , Fenótipo , Genótipo
14.
Anim Genet ; 54(1): 3-23, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36352515

RESUMO

Natural fibers derived from diverse animal species have gained increased attention in recent years due to their favorable environmental effects, long-term sustainability benefits, and remarkable physical and mechanical properties that make them valuable raw materials used for textile and non-textile production. Domestication and selective breeding for the economically significant fiber traits play an imperative role in shaping the genomes and, thus, positively impact the overall productivity of the various fiber-producing species. These selection pressures leave unique footprints on the genome due to alteration in the allelic frequencies at specific loci, characterizing selective sweeps. Recent advances in genomics have enabled the discovery of selection signatures across the genome using a variety of methods. The increased demand for 'green products' manufactured from natural fibers necessitates a detailed investigation of the genomes of the various fiber-producing plant and animal species to identify the candidate genes associated with important fiber attributes such as fiber diameter/fineness, color, length, and strength, among others. The objective of this review is to present a comprehensive overview of the concept of selection signature and selective sweeps, discuss the main methods used for its detection, and address the selection signature studies conducted so far in the diverse fiber-producing animal species.


Assuntos
Genoma , Genômica , Animais , Fenótipo , Domesticação , Seleção Genética , Polimorfismo de Nucleotídeo Único
15.
Anim Genet ; 54(3): 284-294, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36864643

RESUMO

China has diversified resources of indigenous cattle, which are classified into Northern, Central, and Southern groups according to their geographical distribution. Chaling cattle belong to Southern group. This breed is famous for the production of good quality meat with elite meat grades. To analyze the genetic diversity of Chaling cattle, 20 samples were sequenced using whole-genome resequencing technology, along with 138 published whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle as control. It was found that Chaling cattle originated from Chinese indicine cattle. The genetic diversity of Chaling cattle is higher than that of Indian indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle, but lower than that of Chinese indicine cattle and Xiangxi cattle. Annotating the selection signals obtained by composite likelihood ratio, θπ, FST , π-ratio, and XP-EHH methods, several genes associated with immunity, heat tolerance, reproduction, growth, and meat quality showed strong selection signals. In general, this study provides a theoretical basis for analyzing the genetic mechanism of Chaling cattle with excellent adaptability, rough feeding tolerance, good immune performance, and good meat quality. This work lays a foundation for genetic breeding of Chaling cattle in future.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Bovinos , Animais , China , Sequenciamento Completo do Genoma/veterinária , Reprodução
16.
Anim Genet ; 54(6): 667-688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37710403

RESUMO

Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.


Assuntos
Modelos Genéticos , Seleção Genética , Animais , Alelos , Biologia Computacional , Genômica , Genética Populacional
17.
Anim Genet ; 54(6): 731-742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796667

RESUMO

Over the years, indigenous cattle have not only played an essential role in securing primary food sources but have also been utilized for labor by humans, making them invaluable genetic resources. The Zhaotong cattle, a native Chinese breed from the Yunnan province, possess excellent meat quality and resistance to heat and humidity. Here we used whole genome sequencing data of 104 animals to delve into the population structure, genomic diversity and potential positive selection signals in Zhaotong cattle. The findings of this study demonstrate that the genetic composition of Zhaotong cattle was primarily derived from Chinese indicine cattle and East Asian cattle. The nucleotide diversity of Zhaotong cattle was only lower than that of Chinese indicine cattle, which was much higher than that of other taurine cattle. Genome-wide selection scans detected a series of positive candidate regions containing multiple key genes related to bone development and metabolism (CA10, GABRG3, GLDN and NOTUM), meat quality traits (ALG8, LINGO2, MYO5B, PRKG1 and GABRB1), immune response (ADA2, BMF, LEF1 and PAK6) and heat resistance (EIF2AK4 and LEF1). In summary, this study supplies essential genetic insights into the genome diversity within Zhaotong cattle and provides a foundational framework for comprehending the genetic basis of indigenous cattle breeds.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Humanos , Bovinos/genética , Animais , China , Genômica , Fenótipo , Proteínas Serina-Treonina Quinases/genética
18.
Proc Natl Acad Sci U S A ; 117(45): 28150-28159, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33077602

RESUMO

Local wild bovids have been determined to be important prey on the northeastern Tibetan Plateau (NETP), where hunting game was a major subsistence strategy until the late Neolithic, when farming lifestyles dominated in the neighboring Loess Plateau. However, the species affiliation and population ecology of these prehistoric wild bovids in the prehistoric NETP remain unknown. Ancient DNA (aDNA) analysis is highly informative in decoding this puzzle. Here, we applied aDNA analysis to fragmented bovid and rhinoceros specimens dating ∼5,200 y B.P. from the Neolithic site of Shannashuzha located in the marginal area of the NETP. Utilizing both whole genomes and mitochondrial DNA, our results demonstrate that the range of the present-day tropical gaur (Bos gaurus) extended as far north as the margins of the NETP during the late Neolithic from ∼29°N to ∼34°N. Furthermore, comparative analysis with zooarchaeological and paleoclimatic evidence indicated that a high summer temperature in the late Neolithic might have facilitated the northward expansion of tropical animals (at least gaur and Sumatran-like rhinoceros) to the NETP. This enriched the diversity of wildlife, thus providing abundant hunting resources for humans and facilitating the exploration of the Tibetan Plateau as one of the last habitats for hunting game in East Asia.


Assuntos
Biodiversidade , Bovinos , DNA Antigo/análise , Genoma/genética , Migração Animal , Animais , Bovinos/classificação , Bovinos/genética , DNA Mitocondrial , História Antiga , Comportamento de Retorno ao Território Vital , Humanos , Perissodáctilos/classificação , Perissodáctilos/genética , Dinâmica Populacional/história , Ruminantes/classificação , Ruminantes/genética , Tibet
19.
Anim Biotechnol ; 34(5): 1840-1848, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35290167

RESUMO

Heat stress is described as the cumulative detrimental effect caused by an imbalance between heat production within the body and heat dissipation. When cattle are exposed to heat stress with skin surface temperatures exceeding 35 °C, gene networks within and across cells respond to environmental heat loads with both intra and extracellular signals that coordinate cellular and whole-animal metabolism changes to store heat and rapidly increase evaporative heat loss. In this study, we examined evidence from genes known to be associated with heat tolerance (Hsp70, HSF1, HspB8, SOD1, PRLH, ATP1A1, MTOR, and EIF2AK4). This information could serve as valuable resource material for breeding programs aimed at increasing the thermotolerance of cattle.


Assuntos
Termotolerância , Bovinos/genética , Animais , Termotolerância/genética , Resposta ao Choque Térmico/genética , Regulação da Temperatura Corporal , Proteínas de Choque Térmico HSP70/genética , Redes Reguladoras de Genes , Temperatura Alta
20.
Anim Biotechnol ; 34(7): 3256-3260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35994677

RESUMO

The transient receptor potential (TRP) superfamily has been reported to play an important role in heat tolerance pathways. Based on the Bovine Genome Variation Database and Selective Signatures, a missense mutation (NC_037345.1: c.2237A > G: p. His746Arg) (rs209689836) was identified in the transient receptor potential cation channel subfamily M member 4 (TRPM4) gene, a member of the TRP family, corresponding to heat tolerance. Here, we explored the prevalence of this variant in 19 native Chinese cattle (comprised of 404 individuals) to determine its possible association with heat tolerance in Chinese cattle by using PCR and DNA sequencing. The distribution of alleles of NC_037345.1: c.2237A > G: p. His746Arg displays significant geographical differences across native Chinese cattle breeds, consistent with the distribution of indicine and taurine cattle in China. Additionally, the association analysis indicated that the G allele was significantly associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (p < .05), suggesting that cattle carrying allele G were distributed in regions with higher T, RH, and THI. In conclusion, our results suggested that the mutation of the TRPM4 gene in Chinese cattle might be a candidate locus associated with heat tolerance.


Assuntos
Canais de Cátion TRPM , Humanos , Bovinos/genética , Animais , Umidade , Alelos , Sequência de Bases , China
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa