Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199330

RESUMO

Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.


Assuntos
Autofagia , Neoplasias , Humanos , Autofagia/genética , Homeostase , Neoplasias/genética , Citoplasma , Expressão Gênica
2.
Small ; 20(29): e2311880, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366127

RESUMO

Iodide perovskites have demonstrated their unprecedented high efficiency and commercialization potential, and their superior optoelectronic properties, such as high absorption coefficient, high carrier mobility, and narrow direct bandgap, have attracted much attention, especially in solar cells, photodetectors, and light-emitting diodes (LEDs). However, whether it is organic iodide perovskite, organic-inorganic hybrid iodide perovskite or all-inorganic iodide perovskite the stability of these iodide perovskites is still poor and the contamination is high. In recent years, scholars have studied more iodide perovskites to improve their stability as well as optoelectronic properties from various angles. This paper systematically reviews the strategies (component engineering, additive engineering, dimensionality reduction engineering, and phase mixing engineering) used to improve the stability of iodide perovskites and their applications in recent years.

3.
Nano Lett ; 23(15): 6907-6913, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494570

RESUMO

Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, the film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in biosensing, heat transfer, and the enhancement of spontaneous emission.

4.
Phys Rev Lett ; 127(18): 186401, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767429

RESUMO

Through infrared spectroscopy, we systematically study the pressure effect on electronic structures of few-layer black phosphorus (BP) with layer number ranging from 2 to 13. We reveal that the pressure-induced shift of optical transitions exhibits strong layer dependence. In sharp contrast to the bulk counterpart which undergoes a semiconductor to semimetal transition under ∼1.8 GPa, the band gap of 2 L increases with increasing pressure until beyond 2 GPa. Meanwhile, for a sample with a given layer number, the pressure-induced shift also differs for transitions with different indices. Through the tight-binding model in conjunction with a Morse potential for the interlayer coupling, this layer- and transition-index-dependent pressure effect can be fully accounted. Our study paves a way for versatile van der Waals engineering of two-dimensional BP.

5.
Phys Rev Lett ; 126(14): 147401, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891459

RESUMO

Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here we demonstrate strong terahertz plasmons in graphite thin films via infrared spectroscopy, with dramatic tunability by even a moderate temperature change or an in situ bias voltage. Meanwhile, through magnetoplasmon studies, we reveal that massive electrons and massless Dirac holes make comparable contributions to the plasmon response. Our study not only sets up a platform for further exploration of two-component plasmas, but also opens an avenue for terahertz modulation through electrical bias or all-optical means.

6.
Ecotoxicol Environ Saf ; 223: 112591, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364123

RESUMO

As a new type of environmental pollutant, microplastics (MPs) can adsorb residual organochlorine pesticides (OCPs) in the soil and pose a severe threat to the soil ecosystems. To understand the interaction between soil MPs and OCPs, the sorption of two kinds of OCPs, including hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs), on polyethylene (PE) microplastics in soil suspension was studied through sorption kinetics and isotherm models. The effects of solution/soil ratio and MPs diameter on sorption were examined. The kinetic experiment results show that the sorption equilibrium was 12 h, and the sorption process of OCPs on MPs can be well described by a pseudo-second-order model. The Freundlich model (R2 = 0.942-0.997) provides a better fit to the sorption isotherm data than the Langmuir model (R2 = 0.062-0.634), indicating that the sorption process takes place on the nonuniform surface of MPs. The MPs had a good sorption effect on OCPs when the solution/soil ratio was from 75:1 to 100:1. As the diameter of MPs increases, the sorption capacity decreases. These results provide support for further research on microplastic pollution in soil.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes do Solo , Adsorção , Ecossistema , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Microplásticos , Plásticos , Polietileno , Solo
7.
Phys Rev Lett ; 125(15): 156802, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095618

RESUMO

The temperature dependence of the band gap is crucial to a semiconductor. Bulk black phosphorus is known to exhibit an anomalous behavior. Through optical spectroscopy, here we show that the temperature effect on black phosphorus band gap gradually evolves with decreasing layer number, eventually turns into a normal one in the monolayer limit, rendering a crossover from the anomalous to the normal. Meanwhile, the temperature-induced shift in optical resonance also differs with different transition indices for the same thickness sample. A comprehensive analysis reveals that the temperature-tunable interlayer coupling is responsible for the observed diverse scenario. Our study provides a key to the apprehension of the anomalous temperature behavior in certain layered semiconductors.

8.
Autophagy ; 20(7): 1471-1472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744436

RESUMO

The destination of a damaged lysosome is either being repaired if the damage is small or degraded through a lysosome-specific macroautophagy/autophagy pathway named lysophagy when the damage is too extensive to repair. Even though previous studies report lumenal glycan exposure during lysosome damage as a signal to trigger lysophagy, it is possibly beneficial for cells to initiate lysophagy earlier than membrane rupture. In a recently published article, Gahlot et al. determined that SPART/SPG20 senses lipid-packing defects and recruits and activates the ubiquitin ligase ITCH, which labels damaged lysosomes with ubiquitin chains to initiate lysophagy.


Assuntos
Autofagia , Lisossomos , Lisossomos/metabolismo , Humanos , Autofagia/fisiologia , Animais , Macroautofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Modelos Biológicos , Ubiquitina/metabolismo
9.
Front Plant Sci ; 15: 1361959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576787

RESUMO

Artemisinin biosynthesis, unique to Artemisia annua, is suggested to have evolved from the ancestral costunolide biosynthetic pathway commonly found in the Asteraceae family. However, the evolutionary landscape of this process is not fully understood. The first oxidase in artemisinin biosynthesis, CYP71AV1, also known as amorpha-4,11-diene oxidase (AMO), has specialized from ancestral germacrene A oxidases (GAOs). Unlike GAO, which exhibits catalytic promiscuity toward amorpha-4,11-diene, the natural substrate of AMO, AMO has lost its ancestral activity on germacrene A. Previous studies have suggested that the loss of the GAO copy in A. annua is responsible for the abolishment of the costunolide pathway. In the genome of A. annua, there are two copies of AMO, each of which has been reported to be responsible for the different product profiles of high- and low-artemisinin production chemotypes. Through analysis of their tissue-specific expression and comparison of their sequences with those of other GAOs, it was discovered that one copy of AMO (AMOHAP) exhibits a different transcript compared to the reported artemisinin biosynthetic genes and shows more sequence similarity to other GAOs in the catalytic regions. Furthermore, in a subsequent in vitro enzymatic assay, the recombinant protein of AMOHAP unequivocally demonstrated GAO activity. This result clearly indicates that AMOHAP is a GAO rather than an AMO and that its promiscuous activity on amorpha-4,11-diene has led to its misidentification as an AMO in previous studies. In addition, the divergent expression pattern of AMOHAP compared to that of the upstream germacrene A synthase may have contributed to the abolishment of costunolide biosynthesis in A. annua. Our findings reveal a complex evolutionary landscape in which the emergence of a new metabolic pathway replaces an ancestral one.

10.
Nat Commun ; 15(1): 2623, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521817

RESUMO

In-plane anisotropic van der Waals materials have emerged as a natural platform for anisotropic polaritons. Extreme anisotropic polaritons with in-situ broadband tunability are of great significance for on-chip photonics, yet their application remains challenging. In this work, we experimentally characterize through Fourier transform infrared spectroscopy measurements a van der Waals plasmonic material, 2M-WS2, capable of supporting intrinsic room-temperature in-plane anisotropic plasmons in the far and mid-infrared regimes. In contrast to the recently revealed natural hyperbolic plasmons in other anisotropic materials, 2M-WS2 supports canalized plasmons with flat isofrequency contours in the frequency range of ~ 3000-5000 cm-1. Furthermore, the anisotropic plasmons and the corresponding isofrequency contours can be reversibly tuned via in-situ ion-intercalation. The tunable anisotropic and canalization plasmons may open up further application perspectives in the field of uniaxial plasmonics, such as serving as active components in directional sensing, radiation manipulation, and polarization-dependent optical modulators.

11.
Nat Commun ; 15(1): 5981, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013884

RESUMO

Group 3 innate lymphoid cells (ILC3) are crucial for maintaining mucosal homeostasis and regulating inflammatory diseases, but the molecular mechanisms governing their phenotype and function are not fully understood. Here, we show that ILC3s highly express Fcer1g gene, which encodes the antibody Fc-receptor common gamma chain, FcεR1γ. Genetic perturbation of FcεR1γ leads to the absence of critical cell membrane receptors NKp46 and CD16 in ILC3s. Alanine scanning mutagenesis identifies two residues in FcεR1γ that stabilize its binding partners. FcεR1γ expression in ILC3s is essential for effective protective immunity against bacterial and fungal infections. Mechanistically, FcεR1γ influences the transcriptional state and proinflammatory cytokine production of ILC3s, relying on the CD16-FcεR1γ signaling pathway. In summary, our findings highlight the significance of FcεR1γ as an adapter protein that stabilizes cell membrane partners in ILC3s and promotes anti-infection immunity.


Assuntos
Imunidade Inata , Linfócitos , Camundongos Endogâmicos C57BL , Receptores de IgE , Animais , Linfócitos/imunologia , Linfócitos/metabolismo , Receptores de IgE/metabolismo , Receptores de IgE/imunologia , Receptores de IgE/genética , Camundongos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Humanos , Transdução de Sinais , Camundongos Knockout
12.
Toxicol Appl Pharmacol ; 266(3): 329-34, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23261976

RESUMO

Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO(4); a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO(4) and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO(4) on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO(4), induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage.


Assuntos
Quebras de DNA de Cadeia Simples , Compostos Ferrosos/toxicidade , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Fuligem/toxicidade , Emissões de Veículos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo
13.
Autophagy ; 19(2): 377-378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36383451

RESUMO

In recent years, an increasing number of studies have started to investigate the roles of ions and ion channels in macroautophagy/autophagy. One finding is that calcium regulates multiple stages of autophagy with lysosomal calcium release being important for autophagosome and lysosome fusion. MCOLN3/TRPML3, as a calcium-permeable channel that is located on both lysosomes and autophagosomes, has been suggested as an autophagy regulator and a candidate to provide the calcium for autophagic fusion, but how this channel is activated remains unclear. In a recent article, Kim et al. demonstrate that MCOLN3 is a PtdIns3P downstream effector, and the activation of its channel function is critical for autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Autofagia/genética , Autofagia/fisiologia , Cálcio , Canais de Cálcio/metabolismo , Lisossomos , Macroautofagia , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
14.
Cell Death Differ ; 30(6): 1416-1429, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37045910

RESUMO

Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely regulated at multiple levels, involving epigenetic, transcriptional, post-transcriptional, translational, and post-translational mechanisms, to prevent inappropriate autophagy activity. In this review, we focus on autophagy regulation at the transcriptional level, summarizing the transcription factors that control autophagy gene expression in both yeast and mammalian cells. Because the expression and/or subcellular localization of some autophagy transcription factors are altered in certain diseases, we also discuss how changes in transcriptional regulation of autophagy are associated with human pathophysiologies.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/genética , Autofagia/genética , Saccharomyces cerevisiae/genética , Homeostase , Mamíferos
15.
Artigo em Inglês | MEDLINE | ID: mdl-37815967

RESUMO

Reliable and accurate EMG-driven prediction of joint torques are instrumental in the control of wearable robotic systems. This study investigates how different EMG input features affect the machine learning algorithm-based prediction of ankle joint torque in isometric and dynamic conditions. High-density electromyography (HD-EMG) of five lower leg muscles were recorded during isometric contractions and dynamic tasks. Four datasets (HD-EMG, HD-EMG with reduced dimensionality, features extracted from HD-EMG with Convolutional Neural Network, and bipolar EMG) were created and used alone or in combination with joint kinematic information for the prediction of ankle joint torque using Support Vector Regression. The performance was evaluated under intra-session, inter-subject, and inter-session cases. All HD-EMG-derived datasets led to significantly more accurate isometric ankle torque prediction than the bipolar EMG datasets. The highest torque prediction accuracy for the dynamic tasks was achieved using bipolar EMG or HD-EMG with reduced dimensionality in combination with kinematic features. The findings of this study contribute to the knowledge allowing an informed selection of appropriate features for EMG-driven torque prediction.


Assuntos
Articulação do Tornozelo , Músculo Esquelético , Humanos , Articulação do Tornozelo/fisiologia , Torque , Músculo Esquelético/fisiologia , Eletromiografia , Tornozelo/fisiologia , Contração Isométrica/fisiologia
16.
Autophagy ; 19(2): 415-425, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167422

RESUMO

Macroautophagy/autophagy is a highly conserved catabolic process by which cytoplasmic constituents are delivered to the vacuole/lysosome for degradation and recycling. To maintain cellular homeostasis and prevent pathologies, the induction and amplitude of autophagy activity are finely controlled through regulation of ATG gene expression. Here we report that the Ccr4-Not complex in Saccharomyces cerevisiae has bidirectional roles in regulating autophagy before and after nutrient deprivation. Under nutrient-rich conditions, Ccr4-Not directly targets the mRNAs of several ATG genes in the core autophagy machinery to promote their degradation through deadenylation, thus contributing to maintaining autophagy at the basal level. Upon starvation, Ccr4-Not releases its repression of these ATG genes and switches its role to promote the expression of a different subset of ATG genes, which is required for sufficient autophagy induction and activity. These results reveal that the Ccr4-Not complex is indispensable to maintain autophagy at the appropriate amplitude in both basal and stress conditions.Abbreviations: AID, auxin-inducible degron; Ape1, aminopeptidase I; Atg, autophagy related; Cvt, cytoplasm-to-vacuole targeting; DMSO, dimethyl sulfoxide; IAA, indole-3-acetic acid; PA, protein A; RIP, RNA immunoprecipitation.


Assuntos
Nitrogênio , Proteínas de Saccharomyces cerevisiae , Nitrogênio/metabolismo , Autofagia/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Vacúolos/metabolismo , Ribonucleases/metabolismo
17.
Light Sci Appl ; 12(1): 193, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553359

RESUMO

Naturally existing in-plane hyperbolic polaritons and the associated optical topological transitions, which avoid the nano-structuring to achieve hyperbolicity, can outperform their counterparts in artificial metasurfaces. Such plasmon polaritons are rare, but experimentally revealed recently in WTe2 van der Waals thin films. Different from phonon polaritons, hyperbolic plasmon polaritons originate from the interplay of free carrier Drude response and interband transitions, which promise good intrinsic tunability. However, tunable in-plane hyperbolic plasmon polariton and its optical topological transition of the isofrequency contours to the elliptic topology in a natural material have not been realized. Here we demonstrate the tuning of the optical topological transition through Mo doping and temperature. The optical topological transition energy is tuned over a wide range, with frequencies ranging from 429 cm-1 (23.3 microns) for pure WTe2 to 270 cm-1 (37.0 microns) at the 50% Mo-doping level at 10 K. Moreover, the temperature-induced blueshift of the optical topological transition energy is also revealed, enabling active and reversible tuning. Surprisingly, the localized surface plasmon resonance in skew ribbons shows unusual polarization dependence, accurately manifesting its topology, which renders a reliable means to track the topology with far-field techniques. Our results open an avenue for reconfigurable photonic devices capable of plasmon polariton steering, such as canaling, focusing, and routing, and pave the way for low-symmetry plasmonic nanophotonics based on anisotropic natural materials.

18.
Nat Commun ; 14(1): 5314, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658093

RESUMO

The evolution of excitons from 2D to 3D is of great importance in photo-physics, yet the layer-dependent exciton polarizability hasn't been investigated in 2D semiconductors. Here, we determine the exciton polarizabilities for 3- to 11-layer black phosphorus-a direct bandgap semiconductor regardless of the thickness-through frequency-resolved photocurrent measurements on dual-gate devices and unveil the carrier screening effect in relatively thicker samples. By taking advantage of the broadband photocurrent spectra, we are also able to reveal the exciton response for higher-index subbands under the gate electrical field. Surprisingly, dark excitons are brightened with intensity even stronger than the allowed transitions above certain electrical field. Our study not only sheds light on the exciton evolution with sample thickness, but also paves a way for optoelectronic applications of few-layer BP in modulators, tunable photodetectors, emitters and lasers.

19.
Autophagy ; 18(10): 2267-2269, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811564

RESUMO

The conjugation of Atg8-family proteins with phospholipids on the double-membrane phagophore is one of the hallmarks of macroautopahgy/autophagy. However, in the past decades, Atg8-family proteins have also been identified on single-membrane structures, including the phagosome, endosome and lysosome. While the physiological importance of the non-canonical Atg8-family protein conjugation has been demonstrated, the mechanism of this process and the underlying regulation are still not very clear. In a recent paper, Hooper et al. found that during LC3-associated phagocytosis, reactive oxygen species are required for V-ATPase assembly, which is essential for the subsequent LC3 conjugation to the phagosome. Enhanced V-ATPase assembly and the direct engagement of ATG16L1 are also observed in a wide range of non-canonical Atg8-family protein conjugation processes, defining the V-ATPase and ATG16L1 as taking part in a common mechanism.


Assuntos
Adenosina Trifosfatases , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Espécies Reativas de Oxigênio
20.
Autophagy ; 18(1): 1-3, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927553

RESUMO

Mitophagy, a type of selective autophagy targeting damaged or superfluous mitochondria, is critical to maintain cell homeostasis. Besides the well-characterized PRKN-dependent mitophagy, PRKN-independent mitophagy also plays significant physiological roles. In a recent study, researchers from Anne Simonsen's lab discovered two lipid binding kinases, GAK and PRKCD, as positive regulators of PRKN-independent mitophagy. The researchers further investigated how these two proteins regulate mitophagy and demonstrated their roles in vivo. Focusing on the less known PRKN-independent mitophagy regulators, these findings shed light on understanding the mechanism of mitophagy and its relation to diseases.


Assuntos
Mitofagia , Proteínas Quinases , Autofagia , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa