Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(2): e2300560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032154

RESUMO

Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.


Assuntos
Benzofuranos , Coinfecção , Infecções por HIV , HIV-1 , Mycobacterium tuberculosis , Tuberculose , Humanos , Coinfecção/tratamento farmacológico , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/química , Infecções por HIV/tratamento farmacológico , Antirretrovirais/farmacologia
2.
Arch Pharm (Weinheim) ; : e2400029, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627294

RESUMO

Imatinib mesylate was the first representative BCR-ABL1 tyrosine kinase inhibitor (TKI) class for the treatment of chronic myeloid leukemia. Despite the revolution promoted by TKIs in the treatment of this pathology, a resistance mechanism occurs against all BCR-ABL1 inhibitors, necessitating a constant search for new therapeutic options. To develop new antimyeloproliferative substances, we applied a medicinal chemistry tool known as molecular hybridization to design 25 new substances. These compounds were synthesized and biologically evaluated against K562 cells, which express BCR-ABL1, a constitutively active tyrosine kinase enzyme, as well as in WSS-1 cells (healthy cells). The new compounds are conjugated hybrids that contain phenylamino-pyrimidine-pyridine (PAPP) and an isatin backbone, which are the main pharmacophoric fragments of imatinib and sunitinib, respectively. A spiro-oxindole nucleus was used as a linker because it occurs in many compounds with antimyeloproliferative activity. Compounds 2a, 2b, 3c, 4c, and 4e showed promise, as they inhibited cell viability by between 45% and 61% at a concentration of 10 µM. The CC50 of the most active substances was determined to be within 0.8-9.8 µM.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa