Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(4): 044801, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768287

RESUMO

Temporally modulated electron beams have a wide array of applications ranging from the generation of coherently enhanced electromagnetic radiation to the resonant excitation of electromagnetic wakefields in advanced-accelerator concepts. Likewise producing low-energy ultrashort microbunches could be useful for ultrafast electron diffraction and new accelerator-based light-source concepts. In this Letter we propose and experimentally demonstrate a passive microbunching technique capable of forming a picosecond bunch train at ∼6 MeV. The method relies on the excitation of electromagnetic wakefields as the beam propagates through a dielectric-lined waveguide. Owing to the nonultrarelativistic nature of the beam, the induced energy modulation eventually converts into a density modulation as the beam travels in a following free-space drift. The modulated beam is further accelerated to ∼20 MeV while preserving the imparted density modulation.

2.
Phys Rev Lett ; 108(3): 034801, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400747

RESUMO

We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.


Assuntos
Eletricidade , Elétrons , Aceleradores de Partículas , Simulação por Computador , Lasers , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa