Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; : 106696, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389154

RESUMO

There is now compelling evidence for the presence of pathological forms of Tau in tissues of both patients and animal models of Huntington's disease (HD). While the root cause of this illness is a mutation within the huntingtin gene, a number of studies now suggest that HD could also be considered a secondary tauopathy. However, the contributory role of Tau in the pathogenesis and pathophysiology of this condition, as well as its implications in cellular toxicity and consequent behavioral impairments are largely unknown. We therefore performed intracerebral stereotaxic injections of recombinant human Tau monomers and fibrils into the knock-in zQ175 mouse model of HD. Tau fibrils induced cognitive and anxiety-like phenotypes predominantly in zQ175 mice and increased the number and size of insoluble mutant huntingtin (mHTT) aggregates in the brains of treated animals. To better understand the putative mechanisms through which Tau could initiate and/or contribute to pathology, we incubated StHdh striatal cells, a cellular model of HD, with the different Tau forms and evaluated the effects on cell functionality and heat shock proteins Hsp70 and Hsp90. Calcium imaging experiments showed functional impairments of HD StHdh cells following treatment with Tau fibrils, as well as significant changes to the levels of both heat shock proteins which were found trapped within mHTT aggregates. The accumulation of Hsp70 and 90 within aggregates was also present in mouse tissue which suggests that alteration of molecular chaperone-dependent protein quality control may influence aggregation, implicating proteostasis in the mHTT-Tau interplay.

2.
J Neurosci ; 32(31): 10767-79, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855824

RESUMO

Understanding how brief synaptic events can lead to sustained changes in synaptic structure and strength is a necessary step in solving the rules governing learning and memory. Activation of ERK1/2 (extracellular signal regulated protein kinase 1/2) plays a key role in the control of functional and structural synaptic plasticity. One of the triggering events that activates ERK1/2 cascade is an NMDA receptor (NMDAR)-dependent rise in free intracellular Ca(2+) concentration. However the mechanism by which a short-lasting rise in Ca(2+) concentration is transduced into long-lasting ERK1/2-dependent plasticity remains unknown. Here we demonstrate that although synaptic activation in mouse cultured cortical neurons induces intracellular Ca(2+) elevation via both GluN2A and GluN2B-containing NMDARs, only GluN2B-containing NMDAR activation leads to a long-lasting ERK1/2 phosphorylation. We show that αCaMKII, but not ßCaMKII, is critically involved in this GluN2B-dependent activation of ERK1/2 signaling, through a direct interaction between GluN2B and αCaMKII. We then show that interfering with GluN2B/αCaMKII interaction prevents synaptic activity from inducing ERK-dependent increases in synaptic AMPA receptors and spine volume. Thus, in a developing circuit model, the brief activity of synaptic GluN2B-containing receptors and the interaction between GluN2B and αCaMKII have a role in long-term plasticity via the control of ERK1/2 signaling. Our findings suggest that the roles that these major molecular elements have in learning and memory may operate through a common pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , 4-Aminopiridina/farmacologia , Análise de Variância , Animais , Bicuculina/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Córtex Cerebral/citologia , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Guanilato Quinases/metabolismo , Imunoprecipitação , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fotodegradação , Bloqueadores dos Canais de Potássio/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Transfecção
3.
Neurophotonics ; 10(4): 044409, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37786400

RESUMO

In the past two decades, digital brain atlases have emerged as essential tools for sharing and integrating complex neuroscience datasets. Concurrently, the larval zebrafish has become a prominent vertebrate model offering a strategic compromise for brain size, complexity, transparency, optogenetic access, and behavior. We provide a brief overview of digital atlases recently developed for the larval zebrafish brain, intersecting neuroanatomical information, gene expression patterns, and connectivity. These atlases are becoming pivotal by centralizing large datasets while supporting the generation of circuit hypotheses as functional measurements can be registered into an atlas' standard coordinate system to interrogate its structural database. As challenges persist in mapping neural circuits and incorporating functional measurements into zebrafish atlases, we emphasize the importance of collaborative efforts and standardized protocols to expand these resources to crack the complex codes of neuronal activity guiding behavior in this tiny vertebrate brain.

4.
Sci Rep ; 10(1): 11960, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686703

RESUMO

The nanoscale organization of the F-actin cytoskeleton in neurons comprises membrane-associated periodical rings, bundles, and longitudinal fibers. The F-actin rings have been observed predominantly in axons but only sporadically in dendrites, where fluorescence nanoscopy reveals various patterns of F-actin arranged in mixed patches. These complex dendritic F-actin patterns pose a challenge for investigating quantitatively their regulatory mechanisms. We developed here a weakly supervised deep learning segmentation approach of fluorescence nanoscopy images of F-actin in cultured hippocampal neurons. This approach enabled the quantitative assessment of F-actin remodeling, revealing the disappearance of the rings during neuronal activity in dendrites, but not in axons. The dendritic F-actin cytoskeleton of activated neurons remodeled into longitudinal fibers. We show that this activity-dependent remodeling involves [Formula: see text] and NMDA receptor-dependent mechanisms. This highly dynamic restructuring of dendritic F-actin based submembrane lattice into longitudinal fibers may serve to support activity-dependent membrane remodeling, protein trafficking and neuronal plasticity.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Membrana Celular/metabolismo , Dendritos/metabolismo , Hipocampo/citologia , Citoesqueleto de Actina/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Aprendizado Profundo , Modelos Neurológicos , Nanoestruturas/química , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
5.
J Cell Biol ; 198(6): 1055-73, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22965911

RESUMO

The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca(2+) oscillations. The downstream signaling evoked by these local Ca(2+) transients and their impact on local synaptic development and remodeling are unknown. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca(2+) signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca(2+) transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca(2+) transients to support remodeling of local synapses.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Transporte Proteico , Ratos , Receptores de AMPA/metabolismo , Coluna Vertebral/citologia , Coluna Vertebral/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa