Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Phys Chem Chem Phys ; 22(43): 25195-25205, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33125015

RESUMO

Photoinduced intra- and interlayer electron transfer (ET) of doubly bridged donor-acceptor molecule, porphyrin-fullerene dyad (PF), was studied in single- and multi-layered Langmuir-Schäfer (LS) films and in LS films, where PF and an efficient electron donating polymer polyhexyltiophene (PHT) formed a bilayer PHT/PF and multi-layered PHT/PF structures. The ET through layers were investigated by a method, which measures the photovoltaic (PV) response proportional to the number of charge-separated (CS) states and to the CS distance between the electrons and holes formed in pulsed photo-excitation. Primary conclusions were, that ET starts as formations of CS dyads (P+F-) in single-layers, continues as long-range intra-layer charge migrations following interlayer CS between two adjacent monolayers. Quantitative conclusions were, that the interlayer ET efficiency is 100% in the bi-layered PF structure (2PF), where two CS dyads in adjacent layers forms CS complexes (P+F/PF-) and that the probability to form longer or higher order of CS complexes follows an expression of a convergent geometric series, with a converting factor of 2/3. In the PHT/PF bilayer structure the ET efficiency was one order of magnitude higher, than that for the 2PF structure due to the ET from the CS dyads to ground state electron donor PHT, with an acceptor density, much higher than that of (P+F-).

2.
Chemistry ; 23(6): 1306-1317, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27813180

RESUMO

A series of 9-substituted 10-methylacridinium ions (Acr+ -R) in which an electron-donor moiety (R) is directly linked with an electron-acceptor moiety (Acr+ ) at the 9-position was synthesized, and the photodynamics was fully investigated to determine the rate constants of photoinduced electron transfer (ET) and back electron transfer. The driving forces of photoinduced electron transfer and back electron transfer were determined by means of electrochemical and photophysical measurements. The dependence of the ET rate constants on driving force was well analyzed in the light of the Marcus theory of ET. The quantum yields of formation of the triplet ET states vary significantly, depending on the interaction between the donor (R) and acceptor (Acr+ ) moieties. Among the Acr+ -R examined, the 9-mesityl-10-methylacridinium ion (Acr+ -Mes) exhibits the best performance in terms of the lifetime of the triplet ET state and the quantum yield. Photoexcitation of Acr+ -Mes results in formation of the triplet ET state [3 (Acr. -Mes.+ )], which has a long lifetime, a high energy (2.37 eV), and a high quantum yield (>75 %) in acetonitrile. The triplet ET state exhibits both the oxidizing and reducing activity of the Mes.+ and Acr. moieties, respectively.

3.
Chemphyschem ; 18(1): 64-71, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27805802

RESUMO

The preparation of weblike titanium dioxide thin films by atomic layer deposition on cellulose biotemplates is reported. The method produces a TiO2 web, which is flexible and transferable from the deposition substrate to that of the end application. Removal of the cellulose template by calcination converts the amorphous titania to crystalline anatase and gives the structure a hollow morphology. The TiO2 webs are thoroughly characterized using electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy to give new insight into manufacturing of porous titanium dioxide structures by means of template-based methods. Functionality and integrity of the TiO2 hollow weblike thin films were successfully confirmed by applying them as electrodes in dye-sensitized solar cells.

4.
Chemistry ; 22(4): 1501-10, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26632758

RESUMO

Terpyridine-substituted perylenes containing cyclic anhydrides in the peri position were synthesized. The anhydride group served as an anchor for assembly of the terpyridyl-crowned chromophores as monomolecular layers on metal oxide surfaces. Further coordination with Zn(2+) ions allowed for layer-by-layer formation of supramolecular assemblies of perylene imides on the solid substrates. With properly selected anchor and linker molecules it was possible to build high quality structures of greater than ten successive layers by a simple and straightforward procedure. The prepared films were stable and had a broad spectral coverage and high absorbance. To demonstrate their potential use, the synthesized dyes were employed in solid-state dye-sensitized solar cells, and electron injection from the perylene antennas to titanium dioxide was observed.

5.
J Org Chem ; 81(4): 1535-46, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26771655

RESUMO

The benzothiadiazole moiety has been extensively exploited as a building block in the syntheses of efficient organic semiconducting materials during the past decade. In this paper, parallel synthetic routes to benzothiadiazole derivatives, inspired by previous computational findings, are reported. The results presented here show that various C-C cross-couplings of benzothiadiazole, thiophene, and thiazole derivatives can be efficiently performed by applying Xantphos as a ligand of the catalyst system. Moreover, improved and convenient methods to synthesize important chemical building blocks, e.g., 4,7-dibromo-2,1,3-benzothiadiazole, in good to quantitative yields are presented. Additionally, the feasibility of Suzuki-Miyaura and direct coupling methods are compared in the synthesis of target benzothiadiazole derivatives. The computational characterization of the prepared benzothiadiazole derivatives shows that these compounds have planar molecular backbones and the possibility of intramolecular charge transfer upon excitation. The experimental electrochemical and spectroscopic studies reveal that although the compounds have similar electronic and optical properties in solution, they behave differently in solid state due to the different alkyl side-group substitutions in the molecular backbone. These benzothiadiazole derivatives can be potentially used as building blocks in the construction of more advanced small molecule organic semiconductors with acceptor-donor-acceptor motifs.

6.
Chemphyschem ; 15(14): 3089-96, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25044715

RESUMO

The fluorescent probe ROFRET contains a Bodipy molecular rotor connected through a short triazole-based spacer to a fully alkylated Bodipy. Förster resonance energy transfer takes place from the rotor to the other Bodipy, and is enhanced to a limiting value as the viscosity of the solvent increases. Time-resolved spectroscopy and steady-state studies are consistent with both forward and reverse energy transfer, and delayed fluorescence.

7.
J Phys Chem A ; 118(1): 144-51, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24351098

RESUMO

Two previously inaccessible analogs of 10-hydroxybenzo[h]quinoline were prepared via a straightforward strategy comprising the formation of π-expanded phenazines skeleton followed by C-H acetoxylation at position 10. Two bis-phenols possessing C2 and D2 symmetry were obtained in yields of 52% and 15%, respectively. The occurrence of excited state intramolecular proton transfer (ESIPT) was detected in all cases because steady state emission was observed only from the excited keto-tautomer. Additionally, a short-lived, ∼0.1 ps, emission decay was resolved by the femtosecond up-conversion technique at the blue side of the keto-tautomer emission band, 610 nm, and was attributed to the ESIPT, i.e., conversion from enol to keto tautomer. In comparison with the corresponding 10-hydroxybenzo[h]quinoline emissions, the emission spectrum of the π-expanded phenazine analogues were weaker but displayed a characteristic bathochromically shift into NIR region. These phenazine analogues constitute one of largest heterocycles for which ESIPT was unambiguously detected.

8.
J Am Chem Soc ; 135(18): 6951-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23570657

RESUMO

Polymeric vectors for gene delivery are a promising alternative for clinical applications, as they are generally safer than viral counterparts. Our objective was to further our mechanistic understanding of polymer structure-function relationships to allow the rational design of new biomaterials. Utilizing poly(ß-amino ester)s (PBAEs), we investigated polymer-DNA binding by systematically varying the polymer molecular weight, adding single carbons to the backbone and side chain of the monomers that constitute the polymers, and varying the type of polymer end group. We then sought to correlate how PBAE binding affects the polyplex diameter and ζ potential, the transfection efficacy, and its associated cytotoxicity in human breast and brain cancer cells in vitro. Among other trends, we observed in both cell lines that the PBAE-DNA binding constant is biphasic with the transfection efficacy and that the optimal values of the binding constant with respect to the transfection efficacy are in the range (1-6) × 10(4) M(-1). A binding constant in this range is necessary but not sufficient for effective transfection.


Assuntos
Antineoplásicos/farmacologia , Carbono/química , DNA/química , Técnicas de Transferência de Genes , Vetores Genéticos/farmacologia , Polímeros/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Vetores Genéticos/química , Vetores Genéticos/genética , Humanos , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade
9.
Chemistry ; 19(21): 6791-806, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23526550

RESUMO

Novel bay-functionalized perylene diimides with additional substitution sites close to the perylene core have been prepared by the reaction between 1,7(6)-dibromoperylene diimide 6 (dibromo-PDI) and 2-(benzyloxymethyl)pyrrolidine 5. Distinct differences in the chemical behaviors of the 1,7- and 1,6-regioisomers have been discerned. While the 1,6-dibromo-PDI produced the corresponding 1,6-bis-substituted derivative more efficiently, the 1,7-dibromo-PDI underwent predominant mono-debromination, yielding a mono-substituted PDI along with a small amount of the corresponding 1,7-bis-substituted compound. By varying the reaction conditions, a controlled stepwise bis-substitution of the bromo substituents was also achieved, allowing the direct synthesis of asymmetrical 1,6- and 1,7-PDIs. The compounds were isolated as individual regioisomers. Fullerene (C60) was then covalently linked at the bay region of the newly prepared PDIs. In this way, two separate sets of perylene diimide-fullerene dyads, namely single-bridged (SB-1,7-PDI-C60 and SB-1,6-PDI-C60) and double-bridged (DB-1,7-PDI-C60 and DB-1,6-PDI-C60), were synthesized. The fullerene was intentionally attached at the bay region of the PDI to achieve close proximity of the two chromophores and to ensure an efficient photoinduced electron transfer. A detailed study of the photodynamics has revealed that photoinduced electron transfer from the perylene diimide chromophore to the fullerene occurs in all four dyads in polar benzonitrile, and also occurs in the single-bridged dyads in nonpolar toluene. The process was found to be substantially faster and more efficient in the dyads containing the 1,7-regioisomer, both for the singly- and double-bridged molecules. In the case of the single-bridged dyads, SB-1,7-PDI-C60 and SB-1,6-PDI-C60, different relaxation pathways of their charge-separated states have been discovered. To the best of our knowledge, this is the first observation of photoinduced electron transfer in PDI-C60 dyads in a nonpolar medium.

10.
Inorg Chem ; 52(17): 9761-73, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23941685

RESUMO

Three new perylene diimide (PDI)-based ligands have been synthesized by the covalent attachment of dipyrido[a,c]phenazine moiety to one of the bay-positions of PDI, while the second position has been substituted with either a 4-tert-butylphenoxy or a pyrrolidinyl group to obtain two types of chromophores, Ph-PDI and Py-PDI, respectively, with distinct properties. In the case of Py-PDI, the resultant 1,7- and 1,6-regioisomers have been successfully separated by column chromatography and characterized by (1)H NMR spectroscopy. The ligands have been employed to prepare donor-acceptor-based ensembles incorporating the covalently linked PDI and Ru(II) polypyridine complex as the acting chromophores. A comprehensive study of the excited-state photodynamics of the ensembles has been performed by means of electrochemical and steady state and time-resolved spectroscopic methods. Although, in all the three ensembles, the photoexcitation of either chromophore resulted in a long-lived triplet excited state of PDI ((3)PDI) as the final excited state, the photochemical reactions leading to the triplet states were found to be essentially different for the two types of the ensembles. In the case of the Ph-PDI-based ensemble, the excitation of either chromophore leads to the electron transfer from the Ru(II) complex to Ph-PDI, whereas for the Py-PDI-based ensembles, the electron transfer is observed in the opposite direction and only when the Ru(II) complex is excited. The difference in the behavior was rationalized based on electrochemical study of the compounds, which has shown that the Ph-PDI chromophore is a better electron acceptor and the Py-PDI chromophores are relatively better electron donors. This study shows a chemical approach to control the photoreactions in PDI-based dichromophoric ensembles including the possibility to switch the direction of the photoinduced electron transfer.

11.
Org Biomol Chem ; 11(37): 6397-406, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23959205

RESUMO

Perylene diimides (PDIs) substituted with a terpyridine moiety at the bay-region have been synthesized. These building blocks were used to construct supramolecular complexes in chloroform. A dimer and a trimer were built via the bay-region complexation with zinc. The PDI compounds were further modified to have silane anchors and PDI self-assembled monolayers (SAMs) were prepared on a quartz substrate. Complexation of metal ions was also done on the surface, and this was observed clearly in the absorption spectrum. These studies on the surface show possible progress in the study of supramolecular multilayer structures.

12.
Phys Chem Chem Phys ; 15(24): 9854-61, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23676949

RESUMO

A linear molecular dyad was synthesised comprising a pyrene-thiophene energy donor linked via a triazole unit to a borondipyrromethene (Bodipy) energy acceptor. The donor to acceptor separation distance is around 20 Å. Emission from the donor originates from a mixed π-π* and partial charge-transfer state and overlaps favourably with the absorption profile for the acceptor. The level of spectral overlap is dependent on the solvent polarity. Rates for electronic energy transfer were measured by transient absorption spectroscopy in solvents of varying polarity and refractive index. The measured rates for Förster energy transfer (k(EET)) correlate fairly well with the calculated overlap integrals (J(F)). A sigmoidal relationship is observed between k(EET) and the solvent polarity function ΔF.

13.
J Am Chem Soc ; 134(3): 1825-39, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22148321

RESUMO

5-(Diphenylphosphanyl)-10,15,20-triarylporphyrins (meso-phosphanylporphyrins) underwent complexations with palladium(II) and platinum(II) salts to afford phosphapalladacycle- and phosphaplatinacycle-fused coplanar porphyrin dimers, respectively, via regioselective peripheral ß-C-H activation of the meso-phosphanylporphyrin ligands. The optical and electrochemical properties of these metal-linked porphyrin dimers as well as their porphyrin monomer/dimer references were investigated by means of steady-state UV-vis absorption/fluorescence spectroscopy, cyclic and differential pulse voltammetry, time-resolved spectroscopy (fluorescence and transient absorption lifetimes and spectra), and magnetic circular dichroism spectroscopy. All the observed data clearly show that the palladium(II) and platinum(II) linkers play crucial roles in the electronic communication between two porphyrin chromophores at the one-electron oxidized state and in the singlet-triplet intersystem-crossing process at the excited state. It has also been revealed that the C-Pt-C linkage makes more significant impacts on these fundamental properties than the C-Pd-C linkage. Furthermore, density functional theory calculations on the metal-linked porphyrin dimers have suggested that the antibonding dπ-pπ orbital interaction between the peripherally attached metal and adjacent pyrrolic ß-carbon atoms destabilizes the highest occupied molecular orbitals of the porphyrin π-systems and accounts for the observed unique absorption properties. On the basis of these experimental and theoretical results, it can be concluded that the linear carbon-metal-carbon linkages weakly but definitely perturb the optical, photophysical, and electrochemical properties of the phosphametallacycle-linked coplanar porphyrin dimers.


Assuntos
Carbono/química , Complexos de Coordenação/química , Paládio/química , Platina/química , Porfirinas/química , Dimerização , Técnicas Eletroquímicas , Modelos Moleculares , Análise Espectral
14.
Chemistry ; 18(14): 4250-7, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22374704

RESUMO

Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl-functionalized CCG and porphyrin boronic ester. The covalently linked CCG-porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady-state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin-linked CCG revealed a short-lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO(2) electrode coated with the porphyrin-linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π-conjugated systems in the excited and ground states.

15.
Chemphyschem ; 13(5): 1246-54, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22374836

RESUMO

The synthesis of a new azafullerene C(59)N-phthalocyanine (Pc) dyad is described. The key step for the synthesis of the C(59)N-Pc dyad was the formation of the C(59)N-based carboxylic acid, which was smoothly condensed with hydroxy-modified Pc. The structure of the C(59)N-Pc dyad was verified by (1)H and (13)C NMR spectroscopy, IR spectroscopy, UV/Vis spectroscopy and MS measurements. The photophysical and electrochemical properties of the C(59)N-Pc dyad were investigated in both polar and non-polar solvents by steady state and time-resolved photoluminescence and absorption spectroscopy, as well as by cyclic voltammetry. Different relaxation pathways for the photoexcited C(59)N-Pc dyad, as a result of changing the solvent polarity, were found, thus giving rise to energy-transfer phenomena in non-polar toluene and charge-transfer processes in polar benzonitrile. Finally, the detailed quenching mechanisms were evaluated and compared with that of a C(60)-Pc dyad, which revealed that the different excited-state energies and reduction potentials of the two fullerene spheres (i.e. C(59)N vs. C(60)) strongly diverged in the deactivation pathways of the excited states of the corresponding phthalocyanine dyads.

16.
Chemphyschem ; 13(16): 3672-81, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22907846

RESUMO

The photophysical properties of two related dyads based on a N,N-dimethylaniline donor coupled to a fully-alkylated boron dipyrromethene (Bodipy) acceptor are described. In one dyad, BD1, the donor unit is attached directly to the Bodipy group, whereas in the second dyad, BD2, a naphthalene spacer separates the two units. Cyclic voltammograms recorded for the two dyads in deoxygenated MeCN containing a background electrolyte are consistent with the reversible one-electron oxidation of the N,N-dimethylaniline group and the reversible one-electron reduction of the Bodipy nucleus. There is a reasonable driving force (ΔG(CT)) for photoinduced charge transfer from the N,N-dimethylaniline to the Bodipy segment in MeCN. The charge-transfer state is formed for BD1 extremely fast (1.5 ps), but decays over 140 ps to partially restore the ground state. On the other hand, the charge-transfer state for BD2 is formed more slowly, but it decays extremely rapidly. Charge recombination for both dyads leads to a partial triplet formation on the Bodipy group. The naphthalene spacer group is extremely efficient at promoting back electron transfer.

17.
Inorg Chem ; 51(11): 6333-44, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22621319

RESUMO

A rigid rod-like organic molecular ensemble comprised of a triarylamine electron donor, a 2,2'-bipyridine (bpy) ligand, and a 9,10-anthraquinone acceptor was synthesized and reacted with suitable metal precursors to yield triads with Ru(bpy)(3)(2+), Os(bpy)(3)(2+), and [Ir(2-(p-tolyl)pyridine)(2)(bpy)](+) photosensitizers. Photoexcitation of these triads leads to long-lived charge-separated states (τ = 80-1300 ns) containing a triarylamine cation and an anthraquinone anion, as observed by transient absorption spectroscopy. From a combined electrochemical and optical spectroscopic study, the thermodynamics and kinetics for the individual photoinduced charge-separation and thermal charge-recombination events were determined; in some cases, measurements on suitable donor-sensitizer or sensitizer-acceptor dyads were necessary. In the case of the ruthenium and iridium triads, the fully charge-separated state is formed in nearly quantitative yield.

18.
Inorg Chem ; 51(6): 3656-65, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22390175

RESUMO

A new series of molecular dyads and pentad featuring free-base porphyrin and ruthenium phthalocyanine have been synthesized and characterized. The synthetic strategy involved reacting free-base porphyrin functionalized with one or four entities of phenylimidazole at the meso position of the porphyrin ring with ruthenium carbonyl phthalocyanine followed by chromatographic separation and purification of the products. Excitation transfer in these donor-acceptor polyads (dyad and pentad) is investigated in nonpolar toluene and polar benzonitrile solvents using both steady-state and time-resolved emission techniques. Electrochemical and computational studies suggested that the photoinduced electron transfer is a thermodynamically unfavorable process in nonpolar media but may take place in a polar environment. Selective excitation of the donor, free-base porphyrin entity, resulted in efficient excitation transfer to the acceptor, ruthenium phthalocyanine, and the position of imidazole linkage on the free-base porphyrin could be used to tune the rates of excitation transfer. The singlet excited Ru phthalocyanine thus formed instantly relaxed to the triplet state via intersystem crossing prior to returning to the ground state. Kinetics of energy transfer (k(ENT)) was monitored by performing transient absorption and emission measurements using pump-probe and up-conversion techniques in toluene, respectively, and modeled using a Förster-type energy transfer mechanism. Such studies revealed the experimental k(ENT) values on the order of 10(10)-10(11) s(-1), which readily agreed with the theoretically estimated values. Interestingly, in polar benzonitrile solvent, additional charge transfer interactions in the case of dyads but not in the case of pentad, presumably due to the geometry/orientation consideration, were observed.

19.
Anal Bioanal Chem ; 402(3): 1149-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22116380

RESUMO

Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.


Assuntos
Proteínas de Bactérias/química , Técnicas Biossensoriais/instrumentação , Proteínas Luminescentes/química , Fibras Ópticas , Cálcio/análise , Desenho de Equipamento , Maleimidas/química , Modelos Moleculares , Espectrometria de Fluorescência , Propriedades de Superfície
20.
Phys Chem Chem Phys ; 14(9): 3194-9, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22286922

RESUMO

The photophysical and electrochemical properties of a dyad comprising an expanded acridinium light-harvester, coupled via a triple bond to a trialkyloxybenzene donor, are described. Laser excitation of the dyad in 1,2-dichloroethane (DCE) results in rapid charge shift (5 ps) followed by slower charge recombination (81 ps) to completely restore the ground state. Discrimination between forward and return electron transfer (k(ret)/k(for) ~ 16) is rather poor. There is no indication of triplet formation on the expanded acridinium-based group following charge recombination.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa