Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7814): 72-77, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612223

RESUMO

Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface1. These forests are important carbon sinks, and their conservation efforts are vital for the EU's vision of achieving climate neutrality by 20502. However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 20503.


Assuntos
Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Florestas , Biodiversidade , Biomassa , Sequestro de Carbono , Monitoramento Ambiental , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Europa (Continente) , União Europeia/economia , Agricultura Florestal/economia , Agricultura Florestal/legislação & jurisprudência , Aquecimento Global/prevenção & controle , História do Século XXI , Imagens de Satélites , Madeira/economia
2.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514593

RESUMO

Massive and high-quality in situ data are essential for Earth-observation-based agricultural monitoring. However, field surveying requires considerable organizational effort and money. Using computer vision to recognize crop types on geo-tagged photos could be a game changer allowing for the provision of timely and accurate crop-specific information. This study presents the first use of the largest multi-year set of labelled close-up in situ photos systematically collected across the European Union from the Land Use Cover Area frame Survey (LUCAS). Benefiting from this unique in situ dataset, this study aims to benchmark and test computer vision models to recognize major crops on close-up photos statistically distributed spatially and through time between 2006 and 2018 in a practical agricultural policy relevant context. The methodology makes use of crop calendars from various sources to ascertain the mature stage of the crop, of an extensive paradigm for the hyper-parameterization of MobileNet from random parameter initialization, and of various techniques from information theory in order to carry out more accurate post-processing filtering on results. The work has produced a dataset of 169,460 images of mature crops for the 12 classes, out of which 15,876 were manually selected as representing a clean sample without any foreign objects or unfavorable conditions. The best-performing model achieved a macro F1 (M-F1) of 0.75 on an imbalanced test dataset of 8642 photos. Using metrics from information theory, namely the equivalence reference probability, resulted in an increase of 6%. The most unfavorable conditions for taking such images, across all crop classes, were found to be too early or late in the season. The proposed methodology shows the possibility of using minimal auxiliary data outside the images themselves in order to achieve an M-F1 of 0.82 for labelling between 12 major European crops.

4.
Remote Sens Environ ; 253: 112232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33536689

RESUMO

The frequent acquisitions of fine spatial resolution imagery (10 m) offered by recent multispectral satellite missions, including Sentinel-2, can resolve single agricultural fields and thus provide crop-specific phenology metrics, a crucial information for crop monitoring. However, effective phenology retrieval may still be hampered by significant cloud cover. Synthetic aperture radar (SAR) observations are not restricted by weather conditions, and Sentinel-1 thus ensures more frequent observations of the land surface. However, these data have not been systematically exploited for phenology retrieval so far. In this study, we extracted crop-specific land surface phenology (LSP) from Sentinel-1 and Sentinel-2 of major European crops (common and durum wheat, barley, maize, oats, rape and turnip rape, sugar beet, sunflower, and dry pulses) using ground-truth information from the "Copernicus module" of the Land Use/Cover Area frame statistical Survey (LUCAS) of 2018. We consistently used a single model-fit approach to retrieve LSP metrics on temporal profiles of CR (Cross Ratio, the ratio of the backscattering coefficient VH/VV from Sentinel-1) and NDVI (Normalized Difference Vegetation Index from Sentinel-2). Our analysis revealed that LSP retrievals from Sentinel-1 are comparable to those of Sentinel-2, particularly for winter crops. The start of season (SOS) timings, as derived from Sentinel-1 and -2, are significantly correlated (average r of 0.78 for winter and 0.46 for summer crops). The correlation is lower for end of season retrievals (EOS, r of 0.62 and 0.34). Agreement between LSP derived from Sentinel-1 and -2 varies among crop types, ranging from r = 0.89 and mean absolute error MAE = 10 days (SOS of dry pulses) to r = 0.15 and MAE = 53 days (EOS of sugar beet). Observed deviations revealed that Sentinel-1 and -2 LSP retrievals can be complementary; for example for winter crops we found that SAR detected the start of the spring growth while multispectral data is sensitive to the vegetative growth before and during winter. To test if our results correspond reasonably to in-situ data, we compared average crop-specific LSP for Germany to average phenology from ground phenological observations of 2018 gathered from the German Meteorological Service (DWD). Our study demonstrated that both Sentinel-1 and -2 can provide relevant and at times complementary LSP information at field- and crop-level.

5.
Remote Sens Environ ; 239: 111660, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32184531

RESUMO

A novel methodology is proposed to robustly map oil seed rape (OSR) flowering phenology from time series generated from the Copernicus Sentinel-1 (S1) and Sentinel-2 (S2) sensors. The time series are averaged at parcel level, initially for a set of 229 reference parcels for which multiple phenological observations on OSR flowering have been collected from April 21 to May 19, 2018. The set of OSR parcels is extended to a regional sample of 32,355 OSR parcels derived from a regional S2 classification. The study area comprises the northern Brandenburg and Mecklenburg-Vorpommern (N) and the southern Bavaria (S) regions in Germany. A method was developed to automatically compute peak flowering at parcel level from the S2 time signature of the Normalized Difference Yellow Index (NDYI) and from the local minimum in S1 VV polarized backscattering coefficients. Peak flowering was determined at a temporal accuracy of 1 to 4 days. A systematic flowering delay of 1 day was observed in the S1 detection compared to S2. Peak flowering differed by 12 days between the N and S. Considerable local variation was observed in the N-S parcel-level flowering gradient. Additional in-situ phenology observations at 70 Deutscher Wetterdienst (DWD) stations confirm the spatial and temporal consistency between S1 and S2 signatures and flowering phenology across both regions. Conditions during flowering strongly determine OSR yield, therefore, the capacity to continuously characterize spatially the timing of key flowering dates across large areas is key. To illustrate this, expected flowering dates were simulated assuming a single OSR variety with a 425 growing degree days (GDD) requirement to reach flowering. This GDD requirement was calculated based on parcel-level peak flowering dates and temperatures accumulated from 25-km gridded meteorological data. The correlation between simulated and S2 observed peak flowering dates still equaled 0.84 and 0.54 for the N and S respectively. These Sentinel-based parcel-level flowering parameters can be combined with weather data to support in-season predictions of OSR yield, area, and production. Our approach identified the unique temporal signatures of S1 and S2 associated with OSR flowering and can now be applied to monitor OSR phenology for parcels across the globe.

6.
Agric Syst ; 168: 247-257, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30774185

RESUMO

Monitoring crop and rangeland conditions is highly relevant for early warning and response planning in food insecure areas of the world. Satellite remote sensing can obtain relevant and timely information in such areas where ground data are scattered, non-homogenous, or frequently unavailable. Rainfall estimates provide an outlook of the drivers of vegetation growth, whereas time series of satellite-based biophysical indicators at high temporal resolution provide key information about vegetation status in near real-time and over large areas. The new early warning decision support system ASAP (Anomaly hot Spots of Agricultural Production) builds on the experience of the MARS crop monitoring activities for food insecure areas, that have started in the early 2000's and aims at providing timely information about possible crop production anomalies. The information made available on the website (https://mars.jrc.ec.europa.eu/asap/) directly supports multi-agency early warning initiatives such as for example the GEOGLAM Crop Monitor for Early Warning and provides inputs to more detailed food security assessments that are the basis for the annual Global Report on Food Crises. ASAP is a two-step analysis framework, with a first fully automated step classifying the first sub-national level administrative units into four agricultural production deficit warning categories. Warnings are based on rainfall and vegetation index anomalies computed over crop and rangeland areas and are updated every 10 days. They take into account the timing during the crop season at which they occur, using remote sensing derived phenology per-pixel. The second step involves the monthly analysis at country level by JRC crop monitoring experts of all the information available, including the automatic warnings, crop production and food security-tailored media analysis, high-resolution imagery (e.g. Landsat 8, Sentinel 1 and 2) processed in Google Earth Engine and ancillary maps, graphs and statistics derived from a set of indicators. Countries with potentially critical conditions are marked as minor or major hotspots and a global overview is provided together with short national level narratives.

7.
Sci Data ; 8(1): 96, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785753

RESUMO

In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.


Assuntos
Agricultura/tendências , Arecaceae , Mapeamento Geográfico , Óleo de Palmeira , Indonésia , Malásia , Tailândia
8.
Sci Data ; 7(1): 352, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067440

RESUMO

Accurately characterizing land surface changes with Earth Observation requires geo-located ground truth. In the European Union (EU), a tri-annual surveyed sample of land cover and land use has been collected since 2006 under the Land Use/Cover Area frame Survey (LUCAS). A total of 1351293 observations at 651780 unique locations for 106 variables along with 5.4 million photos were collected during five LUCAS surveys. Until now, these data have never been harmonised into one database, limiting full exploitation of the information. This paper describes the LUCAS point sampling/surveying methodology, including collection of standard variables such as land cover, environmental parameters, and full resolution landscape and point photos, and then describes the harmonisation process. The resulting harmonised database is the most comprehensive in-situ dataset on land cover and use in the EU. The database is valuable for geo-spatial and statistical analysis of land use and land cover change. Furthermore, its potential to provide multi-temporal in-situ data will be enhanced by recent computational advances such as deep learning.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa