Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620079

RESUMO

Factor X (FX)-deficiency is a rare bleeding disorder manifesting a bleeding tendency caused by low FX activity levels. We aimed to explore the use of fitusiran (an investigational siRNA that silences antithrombin expression) to increase thrombin generation and the in vivo hemostatic potential under conditions of FX-deficiency. We therefore developed a novel model of inducible FX-deficiency, generating mice expressing <1% FX activity and antigen (f10low-mice). Compared to control f10WT-mice, f10low-mice had 6- and 4-fold prolonged clotting times in Prothrombin Time- and activated Partial Prothrombin Time-assays, respectively (p<0.001). Thrombin generation was severely reduced, irrespective whether tissue factor or factor XIa was used as initiator. In vivo analysis revealed near-absent thrombus formation in a laser-induced vessel injury-model. Furthermore, in two distinct bleeding models, f10low-mice displayed an increased bleeding tendency compared to f10WT-mice. In the tail-clip assay blood loss was increased from 12±16 microliter to 590±335 microliter (p<0.0001). In the saphenous vein puncture (SVP)-model, the number of clots generated was reduced from 19±5 clots/30 min for f10WT-mice to 2±2 clots/30 min (p<0.0001) for f10low-mice. In both models, bleeding was corrected upon infusion of purified FX. Treatment of f10low-mice with fitusiran (2x10 mg/kg at one-week interval) resulted in 17±6% residual antithrombin activity and increased thrombin generation (4-fold and 2-3-fold increase in endogenous thrombin potential and thrombin peak, respectively). In the SVP-model, the number of clots was increased to 8±6 clots/30 min (p=0.0029). Altogether, we demonstrate that reduction of antithrombin levels is associated with improved hemostatic activity under conditions of FX-deficiency.

2.
Blood ; 143(20): 2089-2098, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38271661

RESUMO

ABSTRACT: von Willebrand factor (VWF) is an essential contributor to microvascular thrombosis. Physiological cleavage by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) limits its prothrombotic properties, explaining why ADAMTS13 deficiency leads to attacks of microthrombosis in patients with thrombotic thrombocytopenic purpura (TTP). We previously reported that plasminogen activation takes place during TTP attacks in these patients. Furthermore, stimulation of plasminogen activation attenuates pathogenesis in preclinical TTP models in vivo. This suggests that plasmin is an endogenous regulator of VWF thrombogenicity, in particular when ADAMTS13 falls short to prevent microvascular occlusions. VWF cleavage by plasmin is biochemically distinct from cleavage by ADAMTS13. We hypothesized that plasmin-cleaved VWF (cVWF) holds value as a biomarker of microvascular thrombosis. Here, we describe the development of a variable domain of heavy-chain-only antibody (VHH)-based bioassay that can distinguish cVWF from intact and ADAMTS13-cleaved VWF in plasma. We validate this assay by tracking cVWF release during degradation of microthombi in vitro. We demonstrate that endogenous cVWF formation takes place in patients with TTP during acute attacks of thrombotic microangiopathy but not in those in remission. Finally, we show that therapeutic plasminogen activation in a mouse model of TTP amplifies cVWF formation, which is accompanied by VWF clearance. Our combined findings indicate that cVWF is released from microthrombi in the context of microvascular occlusion.


Assuntos
Proteína ADAMTS13 , Biomarcadores , Fibrinolisina , Púrpura Trombocitopênica Trombótica , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/sangue , Animais , Camundongos , Fibrinolisina/metabolismo , Púrpura Trombocitopênica Trombótica/metabolismo , Púrpura Trombocitopênica Trombótica/sangue , Púrpura Trombocitopênica Trombótica/diagnóstico , Trombose/metabolismo , Trombose/sangue , Trombose/patologia , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/sangue , Feminino
3.
Blood ; 141(23): 2891-2900, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928925

RESUMO

The lack of innovation in von Willebrand disease (VWD) originates from many factors including the complexity and heterogeneity of the disease but also from a lack of recognition of the impact of the bleeding symptoms experienced by patients with VWD. Recently, a few research initiatives aiming to move past replacement therapies using plasma-derived or recombinant von Willebrand factor (VWF) concentrates have started to emerge. Here, we report an original approach using synthetic platelet (SP) nanoparticles for the treatment of VWD type 2B (VWD-2B) and severe VWD (type 3 VWD). SP are liposomal nanoparticles decorated with peptides enabling them to concomitantly bind to collagen, VWF, and activated platelets. In vitro, using various microfluidic assays, we show the efficacy of SPs to improve thrombus formation in VWF-deficient condition (with human platelets) or using blood from mice with VWD-2B and deficient VWF (VWF-KO, ie, type 3 VWD). In vivo, using a tail-clip assay, SP treatment reduced blood loss by 35% in mice with VWD-2B and 68% in mice with VWF-KO. Additional studies using nanoparticles decorated with various combinations of peptides demonstrated that the collagen-binding peptide, although not sufficient by itself, was crucial for SP efficacy in VWD-2B; whereas all 3 peptides appeared necessary for mice with VWF-KO. Clot imaging by immunofluorescence and scanning electron microscopy revealed that SP treatment of mice with VWF-KO led to a strong clot, similar to those obtained in wild-type mice. Altogether, our results show that SP could represent an attractive therapeutic alternative for VWD, especially considering their long half-life and stability.


Assuntos
Hemostáticos , Doença de von Willebrand Tipo 3 , Doenças de von Willebrand , Humanos , Animais , Camundongos , Doenças de von Willebrand/complicações , Doenças de von Willebrand/terapia , Fator de von Willebrand/metabolismo , Plaquetas/metabolismo , Hemostáticos/uso terapêutico , Doença de von Willebrand Tipo 3/metabolismo , Modelos Animais de Doenças , Hemorragia/metabolismo
4.
Blood ; 141(12): 1457-1468, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564031

RESUMO

von Willebrand factor (VWF) is a multimeric protein, the size of which is regulated via ADAMTS13-mediated proteolysis within the A2 domain. We aimed to isolate nanobodies distinguishing between proteolyzed and non-proteolyzed VWF, leading to the identification of a nanobody (designated KB-VWF-D3.1) targeting the A3 domain, the epitope of which overlaps the collagen-binding site. Although KB-VWF-D3.1 binds with similar efficiency to dimeric and multimeric derivatives of VWF, binding to VWF was lost upon proteolysis by ADAMTS13, suggesting that proteolysis in the A2 domain modulates exposure of its epitope in the A3 domain. We therefore used KB-VWF-D3.1 to monitor VWF degradation in plasma samples. Spiking experiments showed that a loss of 10% intact VWF could be detected using this nanobody. By comparing plasma from volunteers to that from congenital von Willebrand disease (VWD) patients, intact-VWF levels were significantly reduced for all VWD types, and most severely in VWD type 2A-group 2, in which mutations promote ADAMTS13-mediated proteolysis. Unexpectedly, we also observed increased proteolysis in some patients with VWD type 1 and VWD type 2M. A significant correlation (r = 0.51, P < .0001) between the relative amount of high-molecular weight multimers and levels of intact VWF was observed. Reduced levels of intact VWF were further found in plasmas from patients with severe aortic stenosis and patients receiving mechanical circulatory support. KB-VWF-D3.1 is thus a nanobody that detects changes in the exposure of its epitope within the collagen-binding site of the A3 domain. In view of its unique characteristics, it has the potential to be used as a diagnostic tool to investigate whether a loss of larger multimers is due to ADAMTS13-mediated proteolysis.


Assuntos
Doença de von Willebrand Tipo 2 , Doenças de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Doenças de von Willebrand/genética , Proteólise , Doença de von Willebrand Tipo 2/diagnóstico , Colágeno , Epitopos/metabolismo , Proteína ADAMTS13/metabolismo
5.
Circ Res ; 133(10): 826-841, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883587

RESUMO

BACKGROUND: Thrombocytopenia has been consistently described in patients with extracorporeal membrane oxygenation (ECMO) and associated with poor outcome. However, the prevalence and underlying mechanisms remain largely unknown, and a device-related role of ECMO in thrombocytopenia has been hypothesized. This study aims to investigate the mechanisms underlying thrombocytopenia in ECMO patients. METHODS: In a prospective cohort of 107 ECMO patients, we investigated platelet count, functions, and glycoprotein shedding. In an ex vivo mock circulatory ECMO loop, we assessed platelet responses and VWF (von Willebrand factor)-GP Ibα (glycoprotein Ibα) interactions at low- and high-flow rates, in the presence or absence of red blood cells. The clearance of human platelets subjected or not to ex vivo perfusion was studied using an in vivo transfusion model in NOD/SCID (nonobese diabetic/severe combined Immunodeficient) mice. RESULTS: In ECMO patients, we observed a time-dependent decrease in platelet count starting 1 hour after device onset, with a mean drop of 7%, 35%, and 41% at 1, 24, and 48 hours post-ECMO initiation (P=0.00013, P<0.0001, and P<0.0001, respectively), regardless of the type of ECMO. This drop in platelet count was associated with a decrease in platelet GP Ibα expression (before: 47.8±9.1 versus 24 hours post-ECMO: 42.3±8.9 mean fluorescence intensity; P=0.002) and an increase in soluble GP Ibα plasma levels (before: 5.6±3.3 versus 24 hours post-ECMO: 10.8±4.1 µg/mL; P<0.0001). GP Ibα shedding was also observed ex vivo and was unaffected by (1) red blood cells, (2) the coagulation potential, (3) an antibody blocking VWF-GP Ibα interaction, (4) an antibody limiting VWF degradation, and (5) supraphysiological VWF plasma concentrations. In contrast, GP Ibα shedding was dependent on rheological conditions, with a 2.8-fold increase at high- versus low-flow rates. Platelets perfused at high-flow rates before being transfused to immunodeficient mice were eliminated faster in vivo with an accelerated clearance of GP Ibα-negative versus GP Ibα-positive platelets. CONCLUSIONS: ECMO-associated shear forces induce GP Ibα shedding and thrombocytopenia due to faster clearance of GP Ibα-negative platelets. Inhibiting GP Ibα shedding could represent an approach to reduce thrombocytopenia during ECMO.


Assuntos
Trombocitopenia , Fator de von Willebrand , Humanos , Animais , Camundongos , Fator de von Willebrand/metabolismo , Estudos Prospectivos , Camundongos Endogâmicos NOD , Camundongos SCID , Plaquetas/metabolismo , Trombocitopenia/terapia , Trombocitopenia/metabolismo
6.
Semin Thromb Hemost ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733982

RESUMO

People with nonsevere hemophilia (PWNSH) are phenotypically more diverse than those with severe hemophilia. Perceptions relating to a "nonsevere" phenotype have contributed to fewer research initiatives, fewer guidelines on optimal management, and a lack of standards for surveillance and clinical assessment for affected individuals. In many cases, episodes of abnormal bleeding could, if investigated, have led to earlier diagnosis. Furthermore, the major recent developments in therapy for hemophilia have largely focused on severe disease and, as a group, PWNSH have not been included in many key clinical trials. Benefiting people with severe disease, innovative replacement therapies have generally targeted factor levels that are above those present in a large proportion of PWNSH. Therapeutic advances can lead to improvement in phenotype for people with severe hemophilia over that currently experienced by many PWNSH. As a result, we are approaching a point where PWNSH may, in many countries, have a higher risk of bleeding and restriction in lifestyle than those with severe disease but with more limited therapeutic options. Given the multiple major advances in treatment for people with hemophilia, it is timely to review the aspects of nonsevere disease, to ensure equity in care and management for all individuals with this condition.

7.
Blood ; 139(4): 597-607, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34752601

RESUMO

Thrombotic microangiopathies are hallmarked by attacks of disseminated microvascular thrombosis. In thrombotic thrombocytopenic purpura (TTP), this is caused by a rise in thrombogenic ultra-large von Willebrand factor (VWF) multimers because of ADAMTS13 deficiency. We previously reported that systemic plasminogen activation is therapeutic in a TTP mouse model. In contrast to its natural activators (ie, tissue plasminogen activator and urokinase plasminogen activator [uPA]), plasminogen can directly bind to VWF. For optimal efficacy and safety, we aimed to focus and accelerate plasminogen activation at sites of microvascular occlusion. We here describe the development and characterization of Microlyse, a fusion protein consisting of a high-affinity VHH targeting the CT/CK domain of VWF and the protease domain of uPA, for localized plasminogen activation on microthrombi. Microlyse triggers targeted destruction of platelet-VWF complexes by plasmin on activated endothelial cells and in agglutination studies. At equal molar concentrations, Microlyse degrades microthrombi sevenfold more rapidly than blockade of platelet-VWF interactions with a bivalent humanized VHH (caplacizumab*). Finally, Microlyse attenuates thrombocytopenia and tissue damage (reflected by increased plasma lactate dehydrogenase activity, as well as PAI-1 and fibrinogen levels) more efficiently than caplacizumab* in an ADAMTS13-/- mouse model of TTP, without affecting hemostasis in a tail-clip bleeding model. These findings show that targeted thrombolysis of VWF by Microlyse is an effective strategy for the treatment of TTP and might hold value for other forms of VWF-driven thrombotic disease.


Assuntos
Fibrinolíticos/uso terapêutico , Microangiopatias Trombóticas/tratamento farmacológico , Fator de von Willebrand/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Microangiopatias Trombóticas/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740972

RESUMO

Serine proteases are essential for many physiological processes and require tight regulation by serine protease inhibitors (SERPINs). A disturbed SERPIN-protease balance may result in disease. The reactive center loop (RCL) contains an enzymatic cleavage site between the P1 through P1' residues that controls SERPIN specificity. This RCL can be modified to improve SERPIN function; however, a lack of insight into sequence-function relationships limits SERPIN development. This is complicated by more than 25 billion mutants needed to screen the entire P4 to P4' region. Here, we developed a platform to predict the effects of RCL mutagenesis by using α1-antitrypsin as a model SERPIN. We generated variants for each of the residues in P4 to P4' region, mutating them into each of the 20 naturally occurring amino acids. Subsequently, we profiled the reactivity of the resulting 160 variants against seven proteases involved in coagulation. These profiles formed the basis of an in silico prediction platform for SERPIN inhibitory behavior with combined P4 to P4' RCL mutations, which were validated experimentally. This prediction platform accurately predicted SERPIN behavior against five out of the seven screened proteases, one of which was activated protein C (APC). Using these findings, a next-generation APC-inhibiting α1-antitrypsin variant was designed (KMPR/RIRA; / indicates the cleavage site). This variant attenuates blood loss in an in vivo hemophilia A model at a lower dosage than the previously developed variant AIKR/KIPP because of improved potency and specificity. We propose that this SERPIN-based RCL mutagenesis approach improves our understanding of SERPIN behavior and will facilitate the design of therapeutic SERPINs.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Inibidor da Proteína C/genética , Engenharia de Proteínas , alfa 1-Antitripsina/genética , Animais , Testes de Coagulação Sanguínea , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Hemofilia A/tratamento farmacológico , Humanos , Camundongos , Inibidor da Proteína C/metabolismo , Inibidor da Proteína C/uso terapêutico , Especificidade por Substrato , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/uso terapêutico
9.
Gene Ther ; 30(3-4): 245-254, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33456057

RESUMO

Von Willebrand disease (VWD), the most common inherited bleeding disorder in humans, is caused by quantitative or qualitative defects in von Willebrand factor (VWF). VWD represents a potential target for gene therapy applications, as a single treatment could potentially result in a long-term correction of the disease. In recent years, several liver-directed gene therapy approaches have been exploited for VWD, but their efficacy was generally limited by the large size of the VWF transgene and the reduced hemostatic activity of the protein produced from hepatocytes. In this context, we aimed at developing a gene therapy strategy for gene delivery into endothelial cells, the natural site of biosynthesis of VWF. We optimized an endothelial-specific dual hybrid AAV vector, in which the large VWF cDNA was put under the control of an endothelial promoter and correctly reconstituted upon cell transduction by a combination of trans-splicing and homologous recombination mechanisms. In addition, we modified the AAV vector capsid by introducing an endothelial-targeting peptide to improve the efficiency for endothelial-directed gene transfer. This vector platform allowed the reconstitution of full-length VWF transgene both in vitro in human umbilical vein endothelial cells and in vivo in VWD mice, resulting in long-term expression of VWF.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Doenças de von Willebrand/genética , Doenças de von Willebrand/metabolismo , Doenças de von Willebrand/terapia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Vetores Genéticos
10.
Circulation ; 146(5): 383-397, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35722876

RESUMO

BACKGROUND: Cerebral microbleeds (CMBs) have been observed in healthy elderly people undergoing systematic brain magnetic resonance imaging. The potential role of acute triggers on the appearance of CMBs remains unknown. We aimed to describe the incidence of new CMBs after transcatheter aortic valve replacement (TAVR) and to identify clinical and procedural factors associated with new CMBs including hemostatic measures and anticoagulation management. METHODS: We evaluated a prospective cohort of patients with symptomatic aortic stenosis referred for TAVR for CMBs (METHYSTROKE [Identification of Epigenetic Risk Factors for Ischemic Complication During the TAVR Procedure in the Elderly]). Standardized neurologic assessment, brain magnetic resonance imaging, and analysis of hemostatic measures including von Willebrand factor were performed before and after TAVR. Numbers and location of microbleeds on preprocedural magnetic resonance imaging and of new microbleeds on postprocedural magnetic resonance imaging were reported by 2 independent neuroradiologists blinded to clinical data. Measures associated with new microbleeds and postprocedural outcome including neurologic functional outcome at 6 months were also examined. RESULTS: A total of 84 patients (47% men, 80.9±5.7 years of age) were included. On preprocedural magnetic resonance imaging, 22 patients (26% [95% CI, 17%-37%]) had at least 1 microbleed. After TAVR, new microbleeds were observed in 19 (23% [95% CI, 14%-33%]) patients. The occurrence of new microbleeds was independent of the presence of microbleeds at baseline and of diffusion-weighted imaging hypersignals. In univariable analysis, a previous history of bleeding (P=0.01), a higher total dose of heparin (P=0.02), a prolonged procedure (P=0.03), absence of protamine reversion (P=0.04), higher final activated partial thromboplastin time (P=0.05), lower final von Willebrand factor high-molecular-weight:multimer ratio (P=0.007), and lower final closure time with adenosine-diphosphate (P=0.02) were associated with the occurrence of new postprocedural microbleeds. In multivariable analysis, a prolonged procedure (odds ratio, 1.22 [95% CI, 1.03-1.73] for every 5 minutes of fluoroscopy time; P=0.02) and postprocedural acquired von Willebrand factor defect (odds ratio, 1.42 [95% CI, 1.08-1.89] for every lower 0.1 unit of high-molecular-weight:multimer ratio; P=0.004) were independently associated with the occurrence of new postprocedural microbleeds. New CMBs were not associated with changes in neurologic functional outcome or quality of life at 6 months. CONCLUSIONS: One out of 4 patients undergoing TAVR has CMBs before the procedure and 1 out of 4 patients develops new CMBs. Procedural or antithrombotic management and persistence of acquired von Willebrand factor defect were associated with the occurrence of new CMBs. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02972008.


Assuntos
Hemorragia Cerebral , Substituição da Valva Aórtica Transcateter , Idoso , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/etiologia , Feminino , Fluoroscopia , Hemostáticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Qualidade de Vida , Fatores de Risco , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento , Fator de von Willebrand
11.
Blood ; 137(17): 2299-2306, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33662989

RESUMO

von Willebrand disease (VWD) is characterized by its heterogeneous clinical manifestation, which complicates its diagnosis and management. The clinical management of VWD has remained essentially unchanged over the last 30 years or so, using von Willebrand factor (VWF) concentrates, desmopressin, and anti-fibrinolytic agents as main tools to control bleeding. This is in contrast to hemophilia A, for which a continuous innovative path has led to novel treatment modalities. Despite current VWD management being considered effective, quality-of-life studies consistently reveal a higher than anticipated burden of VWD on patients, which is particularly true for women. Apparently, despite our perceived notion of current therapeutic efficiency, there is space for innovation with the goal of reaching superior efficacy. Developing innovative treatments for VWD is complex, especially given the heterogeneity of the disease and the multifunctional nature of VWF. In this perspective article, we describe several potential strategies that could provide the basis for future VWD treatments. These include genetic approaches, such as gene therapy using dual-vector adenoassociated virus and transcriptional silencing of mutant alleles. Furthermore, protein-based approaches to increase factor FVIII levels in VWD-type 3 or 2N patients are discussed. Finally, antibody-based options to interfere with VWF degradation (for congenital VWD-type 2A or acquired von Willebrand syndrome-type 2A) or increase endogenous VWF levels (for VWD-type 1) are presented. By highlighting these potential strategies, we hope to initiate an innovative path, which ultimately would allow us to better serve VWD patients and their specific needs.


Assuntos
Fator VIII/administração & dosagem , Mutação , Doenças de von Willebrand/terapia , Fator de von Willebrand/genética , Fator VIII/genética , Terapia Genética , Humanos , Doenças de von Willebrand/patologia
12.
Blood ; 137(16): 2256-2266, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33556175

RESUMO

Genome-wide association studies linked expression of the human neutrophil antigen 3b (HNA-3b) epitope on the Slc44a2 protein with a 30% decreased risk of venous thrombosis (VT) in humans. Slc44a2 is a ubiquitous transmembrane protein identified as a receptor for von Willebrand factor (VWF). To explain the link between Slc44a2 and VT, we wanted to determine how Slc44a2 expressing either HNA-3a or HNA-3b on neutrophils could modulate their adhesion and activation on VWF under flow. Transfected HEK293T cells or neutrophils homozygous for the HNA-3a- or HNA-3b-coding allele were purified from healthy donors and perfused in flow chambers coated with VWF at venous shear rates (100 s-1). HNA-3a expression was required for Slc44a2-mediated neutrophil adhesion to VWF at 100 s-1. This adhesion could occur independently of ß2 integrin and was enhanced when neutrophils were preactivated with lipopolysaccharide. Moreover, specific shear conditions with high neutrophil concentration could act as a "second hit," inducing the formation of neutrophil extracellular traps. Neutrophil mobilization was also measured by intravital microscopy in venules from SLC44A2-knockout and wild-type mice after histamine-induced endothelial degranulation. Mice lacking Slc44a2 showed a massive reduction in neutrophil recruitment in inflamed mesenteric venules. Our results show that Slc44a2/HNA-3a is important for the adhesion and activation of neutrophils in veins under inflammation and when submitted to specific shears. The fact that neutrophils expressing Slc44a2/HNA-3b have a different response on VWF in the conditions tested could thus explain the association between HNA-3b and a reduced risk for VT in humans.


Assuntos
Isoantígenos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neutrófilos/citologia , Fator de von Willebrand/metabolismo , Animais , Circulação Sanguínea , Adesão Celular , Células Cultivadas , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Isoantígenos/genética , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Trombose Venosa/genética , Trombose Venosa/metabolismo
13.
Haematologica ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058210

RESUMO

Recombinant factor VIII (rFVIII), rFVIIIFc and emicizumab are established treatment options in the management of hemophilia A. Each has its unique mode of action, which can influence thrombin generation kinetics and therefore also the kinetics of thrombin substrates. Such differences may potentially result in clots with different structural and physical properties. A starting observation of incomplete wound closure in a patient on emicizumab-prophylaxis led us employ a relevant mouse model in which we noticed that emicizumab-induced clots appeared less stable compared to FVIII-induced clots. We thus analyzed fibrin formation in vitro and in vivo. In vitro fibrin formation was faster and more abundant in the presence of emicizumab compared to rFVIII/rFVIIIFc. Furthermore, the time-interval between the initiation of fibrin formation and factor XIII activation was twice as long for emicizumab compared to rFVIII/rFVIIIFc. Scanning-electron microscopy and immunofluorescent spinning-disk confocal-microscopy of in vivo generated clots confirmed increased fibrin formation in the presence of emicizumab. Unexpectedly, we also detected a different morphology between rFVIII/rFVIIIFc- and emicizumab-induced clots. Contrary to the regular fibrin-mesh obtained with rFVIII/rFVIIIFc, fibrin-fibers appeared to be fused into large patches upon emicizumabtreatment. Moreover, fewer red blood cells were detected in regions where these fibrin patches were present. The presence of highly-dense fibrin-structures associated with a diffuse fiber-structure in emicizumab-induced clots was also observed when using superresolution imaging. We hypothesize that the modified kinetics of thrombin, fibrin and factor XIIIa generation contribute to differences in structural and physical properties between clots formed in the presence of FVIII or emicizumab.

14.
Blood ; 136(6): 740-748, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32369559

RESUMO

The bispecific antibody emicizumab is increasingly used for hemophilia A treatment. However, its specificity for human factors IX and X (FIX and FX) has limited its in vivo functional analysis to primate models of acquired hemophilia. Here, we describe a novel mouse model that allows emicizumab function to be examined. Briefly, FVIII-deficient mice received IV emicizumab 24 hours before tail-clip bleeding was performed. A second infusion with human FIX and FX, administered 5 minutes before bleeding, generated consistent levels of emicizumab (0.7-19 mg/dL for 0.5-10 mg/kg doses) and of both FIX and FX (85 and 101 U/dL, respectively, after dosing at 100 U/kg). Plasma from these mice display FVIII-like activity in assays (diluted activated partial thromboplastin time and thrombin generation), similar to human samples containing emicizumab. Emicizumab doses of 1.5 mg/kg and higher significantly reduced blood loss in a tail-clip-bleeding model using FVIII-deficient mice. However, reduction was incomplete compared with mice treated with human FVIII concentrate, and no difference in efficacy between doses was observed. From this model, we deducted FVIII-like activity from emicizumab that corresponded to a dose of 4.5 U of FVIII per kilogram (ie, 9.0 U/dL). Interestingly, combined with a low FVIII dose (5 U/kg), emicizumab provided enough additive activity to allow complete bleeding arrest. This model could be useful for further in vivo analysis of emicizumab.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Fator IX/administração & dosagem , Fator X/administração & dosagem , Hemofilia A/tratamento farmacológico , Hemorragia/tratamento farmacológico , Modelos Animais , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Quimioterapia Combinada , Fator IX/análise , Fator IX/imunologia , Fator VIII/administração & dosagem , Fator VIII/análise , Fator VIII/uso terapêutico , Fator X/análise , Fator X/imunologia , Fator XIa/farmacologia , Feminino , Hemofilia A/sangue , Hemofilia A/complicações , Hemofilia A/imunologia , Hemorragia/etiologia , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tempo de Tromboplastina Parcial , Cauda/lesões , Trombina/biossíntese
15.
Haemophilia ; 28 Suppl 4: 5-10, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35521728

RESUMO

Deficiency or dysfunction of von Willebrand factor (VWF) is associated with a bleeding disorder known as von Willebrand disease (VWD). The clinical manifestations of VWD are heterogeneous, and are in part dictated by the structural or functional defects of VWF. The tools to control bleeding in VWD are dominated by VWF concentrates, desmopressin and antifibrinolytic therapy. In view of these treatments being considered as effective, it is surprising that quality-of-life studies consistently demonstrate a significant mental and physical burden in VWD patients, particularly in women. Apparently, the current weaponry to support the management of VWD is insufficient to fully address the needs of the patients. It is important therefore to continue to search for innovative treatment options which could better serve the VWD patients. In this short review, two of such options are discussed in more detail: emicizumab to correct for the deficiency of factor VIII (FVIII), and the pegylated aptamer BT200 to increase endogenous levels of the VWF/FVIII complex.


Assuntos
Antifibrinolíticos , Hemostáticos , Doenças de von Willebrand , Antifibrinolíticos/uso terapêutico , Desamino Arginina Vasopressina/uso terapêutico , Fator VIII/uso terapêutico , Feminino , Hemorragia/tratamento farmacológico , Hemostáticos/uso terapêutico , Humanos , Doenças de von Willebrand/tratamento farmacológico , Fator de von Willebrand/uso terapêutico
16.
Blood ; 134(19): 1632-1644, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31383642

RESUMO

Hemophilia A and B, diseases caused by the lack of factor VIII (FVIII) and factor IX (FIX) respectively, lead to insufficient thrombin production, and therefore to bleeding. New therapeutic strategies for hemophilia treatment that do not rely on clotting factor replacement, but imply the neutralization of natural anticoagulant proteins, have recently emerged. We propose an innovative approach consisting of targeting a natural and potent thrombin inhibitor, expressed by platelets, called protease nexin-1 (PN-1). By using the calibrated automated thrombin generation assay, we showed that a PN-1-neutralizing antibody could significantly shorten the thrombin burst in response to tissue factor in platelet-rich plasma (PRP) from patients with mild or moderate hemophilia. In contrast, in PRP from patients with severe hemophilia, PN-1 neutralization did not improve thrombin generation. However, after collagen-induced platelet activation, PN-1 deficiency in F8-/-mice or PN-1 blocking in patients with severe disease led to a significantly improved thrombin production in PRP, underlining the regulatory role of PN-1 released from platelet granules. In various bleeding models, F8-/-/PN-1-/- mice displayed significantly reduced blood loss and bleeding time compared with F8-/-mice. Moreover, platelet recruitment and fibrin(ogen) accumulation were significantly higher in F8-/-/PN-1-/- mice than in F8-/-mice in the ferric chloride-induced mesenteric vessel injury model. Thromboelastometry studies showed enhanced clot stability and lengthened clot lysis time in blood from F8-/-/PN-1-/- and from patients with hemophilia A incubated with a PN-1-neutralizing antibody compared with their respective controls. Our study thus provides proof of concept that PN-1 neutralization can be a novel approach for future clinical care in hemophilia.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/enzimologia , Serpina E2/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/farmacologia , Transtornos Herdados da Coagulação Sanguínea/complicações , Hemorragia/etiologia , Hemostasia/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos
17.
Blood ; 133(4): 366-376, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30305279

RESUMO

Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.


Assuntos
Plaquetas/metabolismo , Integrinas/metabolismo , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Dissulfetos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Soluções , Relação Estrutura-Atividade
18.
Haematologica ; 106(3): 819-828, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107335

RESUMO

von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Animais , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Fator de von Willebrand/genética
19.
Blood ; 132(11): 1193-1197, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30064978

RESUMO

Von Willebrand factor (VWF) modulates factor VIII (FVIII) clearance and the anti-FVIII immune response. Despite the high affinity that defines the FVIII/VWF interaction, association/dissociation kinetics dictates 2% to 5% FVIII being present as free protein. To avoid free FVIII when studying the FVIII-VWF complex in vivo, we designed a FVIII-nanobody fusion protein, with the nanobody part being directed against VWF. This fusion protein, designated FVIII-KB013bv, had a 25-fold higher affinity compared with B-domainless FVIII (BDD-FVIII) for VWF. In vitro analysis revealed full cofactor activity in 1-stage clotting and chromogenic assays (activity/antigen ratio 1.0 ± 0.3 and 1.1 ± 0.3, respectively). In vivo, FVIII-013bv displayed a twofold increased mean residence time compared with BDD-FVIII (3.0 hours vs 1.6 hours). In a tail clip-bleeding assay performed 24 hours after FVIII infusion, blood loss was significantly reduced in mice receiving FVIII-KB013bv vs BDD-FVIII (15 ± 7 µL vs 194 ± 146 µL; P = .0043). Unexpectedly, when examining anti-FVIII antibody formation in FVIII-deficient mice, the immune-response toward FVIII-KB013bv was significantly reduced compared with BDD-FVIII (1/8 vs 14/16 mice produced anti-FVIII antibodies after treatment with FVIII-KB013bv and BDD-FVIII, respectively). Our data show that a stabilized interaction between FVIII and VWF is associated with a prolonged survival of FVIII and a reduced immune response against FVIII.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Autoanticorpos , Fator VIII , Proteínas Recombinantes de Fusão , Anticorpos de Domínio Único/farmacologia , Fator de von Willebrand , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Fator VIII/imunologia , Fator VIII/farmacocinética , Fator VIII/farmacologia , Camundongos , Camundongos Mutantes , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Fator de von Willebrand/imunologia , Fator de von Willebrand/metabolismo
20.
Haematologica ; 105(4): 1129-1137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31289204

RESUMO

The treatment or prevention of bleeding in patients with hemophilia A relies on replacement therapy with different factor VIII (FVIII)-containing products or on the use of by-passing agents, i.e., activated prothrombin complex concentrates or recombinant activated factor VII. Emerging approaches include the use of bispecific anti-factor IXa/factor X antibodies, anti-tissue factor pathway inhibitor antibodies, interfering RNA to antithrombin, and activated protein C-specific serpins or gene therapy. The latter strategies are, however, hampered by the short clinical experience and potential adverse effects including the absence of tight temporal and spatial control of coagulation and the risk of uncontrolled insertional mutagenesis. Systemic delivery of mRNA allows endogenous production of the corresponding encoded protein. Thus, injection of erythropoietin-encoding mRNA in a lipid nanoparticle formulation resulted in increased erythropoiesis in mice and macaques. Here, we demonstrate that a single injection of in vitro transcribed B domain-deleted FVIII-encoding mRNA to FVIII-deficient mice enables endogenous production of pro-coagulant FVIII. Circulating FVIII:C levels above 5% of normal levels were maintained for up to 72 h, with an estimated half-life of FVIII production of 17.9 h, and corrected the bleeding phenotype in a tail clipping assay. The endogenously produced FVIII did however exhibit low specific activity and induced a potent neutralizing IgG response upon repeated administration of the mRNA. Our results suggest that the administration of mRNA is a plausible strategy for the endogenous production of proteins characterized by poor translational efficacy. The use of alternative mRNA delivery systems and improved FVIII-encoding mRNA should foster the production of functional molecules and reduce their immunogenicity.


Assuntos
Anticorpos Biespecíficos , Hemofilia A , Animais , Fator VIII/genética , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Hemorragia/terapia , Humanos , Camundongos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa