Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39276772

RESUMO

Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.

2.
Cell ; 171(7): 1692-1706.e18, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153837

RESUMO

Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.


Assuntos
Anticorpos/química , Bioquímica/métodos , Transporte Proteico , Proteólise , Animais
3.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33503406

RESUMO

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Assuntos
Modelos Moleculares , Tamoxifeno/química , Canais de Sódio Disparados por Voltagem/química , Células HEK293 , Humanos
4.
Nature ; 603(7902): 706-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104837

RESUMO

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação Viral
5.
Mol Cell ; 79(2): 221-233.e5, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32603710

RESUMO

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Epigênese Genética , Edição de Genes , Técnicas de Silenciamento de Genes , Humanos , Nucleossomos/metabolismo , Xenopus laevis
6.
Nature ; 599(7883): 114-119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34488225

RESUMO

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.


Assuntos
Evasão da Resposta Imune , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Replicação Viral/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Fusão Celular , Linhagem Celular , Feminino , Pessoal de Saúde , Humanos , Índia , Cinética , Masculino , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação
7.
PLoS Pathog ; 20(2): e1012001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330058

RESUMO

Cells are unceasingly confronted by oxidative stresses that oxidize proteins on their cysteines. The thioredoxin (Trx) system, which is a ubiquitous system for thiol and protein repair, is composed of a thioredoxin (TrxA) and a thioredoxin reductase (TrxB). TrxAs reduce disulfide bonds of oxidized proteins and are then usually recycled by a single pleiotropic NAD(P)H-dependent TrxB (NTR). In this work, we first analyzed the composition of Trx systems across Bacteria. Most bacteria have only one NTR, but organisms in some Phyla have several TrxBs. In Firmicutes, multiple TrxBs are observed only in Clostridia, with another peculiarity being the existence of ferredoxin-dependent TrxBs. We used Clostridioides difficile, a pathogenic sporulating anaerobic Firmicutes, as a model to investigate the biological relevance of TrxB multiplicity. Three TrxAs and three TrxBs are present in the 630Δerm strain. We showed that two systems are involved in the response to infection-related stresses, allowing the survival of vegetative cells exposed to oxygen, inflammation-related molecules and bile salts. A fourth TrxB copy present in some strains also contributes to the stress-response arsenal. One of the conserved stress-response Trx system was found to be present both in vegetative cells and in the spores and is under a dual transcriptional control by vegetative cell and sporulation sigma factors. This Trx system contributes to spore survival to hypochlorite and ensure proper germination in the presence of oxygen. Finally, we found that the third Trx system contributes to sporulation through the recycling of the glycine-reductase, a Stickland pathway enzyme that allows the consumption of glycine and contributes to sporulation. Altogether, we showed that Trx systems are produced under the control of various regulatory signals and respond to different regulatory networks. The multiplicity of Trx systems and the diversity of TrxBs most likely meet specific needs of Clostridia in adaptation to strong stress exposure, sporulation and Stickland pathways.


Assuntos
Bactérias , Tiorredoxina Dissulfeto Redutase , Bactérias/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Firmicutes/metabolismo , Oxigênio , Glicina
8.
Proc Natl Acad Sci U S A ; 120(16): e2220557120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040417

RESUMO

The mature HIV-1 capsid protects the viral genome and interacts with host proteins to travel from the cell periphery into the nucleus. To achieve this, the capsid protein, CA, constructs conical capsids from a lattice of hexamers and pentamers, and engages in and then relinquishes multiple interactions with cellular proteins in an orchestrated fashion. Cellular host factors including Nup153, CPSF6, and Sec24C engage the same pocket within CA hexamers. How CA assembles pentamers and hexamers of different curvatures, how CA oligomerization states or curvature might modulate host-protein interactions, and how binding of multiple cofactors to a single site is coordinated, all remain to be elucidated. Here, using single-particle cryoEM, we have determined the structure of the mature HIV-1 CA pentamer and hexamer from conical CA-IP6 polyhedra to ~3 Å resolution. We also determined structures of hexamers in the context of multiple lattice curvatures and number of pentamer contacts. Comparison of these structures, bound or not to host protein peptides, revealed two structural switches within HIV-1 CA that modulate peptide binding according to CA lattice curvature and whether CA is hexameric or pentameric. These observations suggest that the conical HIV-1 capsid has different host-protein binding properties at different positions on its surface, which may facilitate cell entry and represent an evolutionary advantage of conical morphology.


Assuntos
Capsídeo , HIV-1 , Capsídeo/metabolismo , Proteínas do Capsídeo/química , HIV-1/genética , Ligação Proteica , Citoplasma/metabolismo
9.
EMBO J ; 40(17): e108588, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323299

RESUMO

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19/sangue , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/virologia , Humanos , Nucleoproteínas/sangue , Nucleoproteínas/imunologia , SARS-CoV-2/patogenicidade
10.
EMBO J ; 40(5): e106228, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258165

RESUMO

Nucleoprotein (N) is an immunodominant antigen in many enveloped virus infections. While the diagnostic value of anti-N antibodies is clear, their role in immunity is not. This is because while they are non-neutralising, they somehow clear infection by coronavirus, influenza and LCMV in vivo. Here, we show that anti-N immune protection is mediated by the cytosolic Fc receptor and E3 ubiquitin ligase TRIM21. Exploiting LCMV as a model system, we demonstrate that TRIM21 uses anti-N antibodies to target N for cytosolic degradation and generate cytotoxic T cells (CTLs) against N peptide. These CTLs rapidly eliminate N-peptide-displaying cells and drive efficient viral clearance. These results reveal a new mechanism of immune synergy between antibodies and T cells and highlights N as an important vaccine target.


Assuntos
Anticorpos Antivirais/imunologia , Imunidade Celular , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas do Nucleocapsídeo/imunologia , Ribonucleoproteínas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Knockout , Proteínas do Nucleocapsídeo/genética , Ribonucleoproteínas/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
11.
Nat Immunol ; 14(4): 327-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455675

RESUMO

During pathogen infection, antibodies can be carried into the infected cell, where they are detected by the ubiquitously expressed cytosolic antibody receptor TRIM21. Here we found that recognition of intracellular antibodies by TRIM21 activated immune signaling. TRIM21 catalyzed the formation of Lys63 (K63)-linked ubiquitin chains and stimulated the transcription factor pathways of NF-κB, AP-1, IRF3, IRF5 and IRF7. Activation resulted in the production of proinflammatory cytokines, modulation of natural killer stress ligands and induction of an antiviral state. Intracellular antibody signaling was abrogated by genetic deletion of TRIM21 and was restored by ectopic expression of TRIM21. The sensing of antibodies by TRIM21 was stimulated after infection by DNA or RNA nonenveloped viruses or intracellular bacteria. Thus, the antibody-TRIM21 detection system provides potent, comprehensive activation of the innate immune system independently of known pattern-recognition receptors.


Assuntos
Anticorpos Antivirais/imunologia , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Receptores Fc/metabolismo , Ribonucleoproteínas/imunologia , Transdução de Sinais , Vírus/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Bactérias/imunologia , Linhagem Celular , Reações Cruzadas , Citocinas/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Reconhecimento de Padrão/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Fator de Transcrição AP-1/metabolismo
12.
EMBO Rep ; 24(5): e56275, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36970882

RESUMO

HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.


Assuntos
Capsídeo , Infecções por HIV , Humanos , Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo
13.
Cell ; 141(7): 1220-9, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603002

RESUMO

The AP2 adaptor complex (alpha, beta2, sigma2, and mu2 subunits) crosslinks the endocytic clathrin scaffold to PtdIns4,5P(2)-containing membranes and transmembrane protein cargo. In the "locked" cytosolic form, AP2's binding sites for the two endocytic motifs, YxxPhi on the C-terminal domain of mu2 (C-mu2) and [ED]xxxL[LI] on sigma2, are blocked by parts of beta2. Using protein crystallography, we show that AP2 undergoes a large conformational change in which C-mu2 relocates to an orthogonal face of the complex, simultaneously unblocking both cargo-binding sites; the previously unstructured mu2 linker becomes helical and binds back onto the complex. This structural rearrangement results in AP2's four PtdIns4,5P(2)- and two endocytic motif-binding sites becoming coplanar, facilitating their simultaneous interaction with PtdIns4,5P(2)/cargo-containing membranes. Using a range of biophysical techniques, we show that the endocytic cargo binding of AP2 is driven by its interaction with PtdIns4,5P(2)-containing membranes.


Assuntos
Complexo 2 de Proteínas Adaptadoras/química , Sítios de Ligação , Membrana Celular/química , Ligantes , Modelos Moleculares , Fosfatidilinositóis/química , Conformação Proteica
14.
Cell Mol Life Sci ; 81(1): 386, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243335

RESUMO

Organisms respond to proteotoxic-stress by activating the heat-shock response, a cellular defense mechanism regulated by a family of heat-shock factors (HSFs); among six human HSFs, HSF1 acts as a proteostasis guardian regulating severe stress-driven transcriptional responses. Herein we show that human coronaviruses (HCoV), both low-pathogenic seasonal-HCoVs and highly-pathogenic SARS-CoV-2 variants, are potent inducers of HSF1, promoting HSF1 serine-326 phosphorylation and triggering a powerful and distinct HSF1-driven transcriptional-translational response in infected cells. Despite the coronavirus-mediated shut-down of the host translational machinery, selected HSF1-target gene products, including HSP70, HSPA6 and AIRAP, are highly expressed in HCoV-infected cells. Using silencing experiments and a direct HSF1 small-molecule inhibitor we show that, intriguingly, HCoV-mediated activation of the HSF1-pathway, rather than representing a host defense response to infection, is hijacked by the pathogen and is essential for efficient progeny particles production. The results open new scenarios for the search of innovative antiviral strategies against coronavirus infections.


Assuntos
Fatores de Transcrição de Choque Térmico , SARS-CoV-2 , Replicação Viral , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Fosforilação , Interações Hospedeiro-Patógeno/genética , COVID-19/virologia , COVID-19/metabolismo , Animais , Coronavirus/fisiologia , Coronavirus/metabolismo , Chlorocebus aethiops , Células HEK293 , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética
15.
Semin Cell Dev Biol ; 126: 99-107, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34823983

RESUMO

The cytosolic antibody receptor and RING E3 ligase TRIM21 targets intracellular, antibody-coated immune complexes for degradation and activates the immune system. Here we review how TRIM21 degrades diverse targets and how this activity can be exploited in molecular biology and for the development of new therapeutics. In addition, we compare what is known about TRIM21's mechanism to other TRIM proteins and RING E3 ligases.


Assuntos
Ribonucleoproteínas , Ubiquitina-Proteína Ligases , Anticorpos , Citosol/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Am J Med Genet A ; : e63638, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779990

RESUMO

Myhre syndrome is an increasingly diagnosed ultrarare condition caused by recurrent germline autosomal dominant de novo variants in SMAD4. Detailed multispecialty evaluations performed at the Massachusetts General Hospital (MGH) Myhre Syndrome Clinic (2016-2023) and by collaborating specialists have facilitated deep phenotyping, genotyping and natural history analysis. Of 47 patients (four previously reported), most (81%) patients returned to MGH at least once. For patients followed for at least 5 years, symptom progression was observed in all. 55% were female and 9% were older than 18 years at diagnosis. Pathogenic variants in SMAD4 involved protein residues p.Ile500Val (49%), p.Ile500Thr (11%), p.Ile500Leu (2%), and p.Arg496Cys (38%). Individuals with the SMAD4 variant p.Arg496Cys were less likely to have hearing loss, growth restriction, and aortic hypoplasia than the other variant groups. Those with the p.Ile500Thr variant had moderate/severe aortic hypoplasia in three patients (60%), however, the small number (n = 5) prevented statistical comparison with the other variants. Two deaths reported in this cohort involved complex cardiovascular disease and airway stenosis, respectively. We provide a foundation for ongoing natural history studies and emphasize the need for evidence-based guidelines in anticipation of disease-specific therapies.

17.
Virol J ; 21(1): 70, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515117

RESUMO

Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Anticorpos Amplamente Neutralizantes , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinação , Anticorpos Antivirais
18.
Alzheimers Dement ; 20(2): 1013-1025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849026

RESUMO

INTRODUCTION: Signatures of a type-I interferon (IFN-I) response are observed in the post mortem brain in Alzheimer's disease (AD) and other tauopathies. However, the effect of the IFN-I response on pathological tau accumulation remains unclear. METHODS: We examined the effects of IFN-I signaling in primary neural culture models of seeded tau aggregation and P301S-tau transgenic mouse models in the context of genetic deletion of the IFN-I receptor (IFNAR). RESULTS: Polyinosinic:polycytidylic acid (PolyI:C), a synthetic analog of viral nucleic acids, evoked a potent cytokine response that enhanced seeded aggregation of tau in an IFN-I-dependent manner. IFN-I-induced vulnerability could be pharmacologically prevented and was intrinsic to neurons. Aged P301S-tau mice lacking Ifnar1 had significantly reduced tau pathology compared to mice with intact IFN signaling. DISCUSSION: We identify a critical role for IFN-I in potentiating tau aggregation. IFN-I is therefore identified as a potential therapeutic target in AD and other tauopathies. HIGHLIGHTS: Type-I IFN (IFN-I) promotes seeded tau aggregation in neural cultures. IFNAR inhibition prevents IFN-I driven sensitivity to tau aggregation. IFN-I driven vulnerability is intrinsic to neurons. Tau pathology is significantly reduced in aged P301S-tau mice lacking IFNAR.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Tauopatias , Camundongos , Animais , Proteínas tau/genética , Interferon Tipo I/uso terapêutico , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/patologia , Modelos Animais de Doenças
19.
J Infect Dis ; 227(2): 251-255, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108092

RESUMO

We administered BNT162b2 as a third dose to 314 adults aged ≥30 years who had previously received 2 doses of inactivated vaccine. We collected blood samples before the third dose and again after 1 month and 6 months, and found robust antibody responses to the ancestral strain at 6 months after receipt of BNT162b2. Antibody responses to Omicron BA.2 by live virus neutralization were weaker after the third dose and had declined to a low level by 6 months.


Assuntos
Anticorpos , Vacina BNT162 , Adulto , Humanos , Vacinas de Produtos Inativados , Anticorpos Antivirais
20.
Clin Infect Dis ; 76(3): e299-e307, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675370

RESUMO

BACKGROUND: Limited data exist on antibody responses to mixed vaccination strategies that involve inactivated coronavirus disease 2019 (COVID-19) vaccines, particularly in the context of emerging variants. METHODS: We conducted an open-label trial of a third vaccine dose of a messenger RNA (mRNA) vaccine (BNT162b2, Fosun Pharma/BioNTech) in adults aged ≥30 years who had previously received 2 doses of inactivated COVID-19 vaccine. We collected blood samples before administering the third dose and 28 days later and tested for antibodies to the ancestral virus using a binding assay (enzyme-linked immunosorbent assay [ELISA]), a surrogate virus neutralization test (sVNT), and a live virus plaque reduction neutralization test (PRNT). We also tested for antibodies against the Omicron variant using live-virus PRNT. RESULTS: In 315 participants, a third dose of BNT162b2 substantially increased antibody titers on each assay. Mean ELISA levels increased from an optical density of 0.3 to 2.2 (P < .001), and mean sVNT levels increased from an inhibition of 17% to 96% (P < .001). In a random subset of 20 participants, the geometric mean PRNT50 titers rose substantially, by 45-fold from day 0 to day 28 against the ancestral virus (P < .001) and by 11-fold against the Omicron variant (P < .001). In daily monitoring, post-vaccination reactions subsided within 7 days for more than 99% of participants. CONCLUSIONS: A third dose of COVID-19 vaccine with an mRNA vaccine substantially improved antibody levels against the ancestral virus and the Omicron variant with a well-tolerated safety profile in adults who had received 2 doses of inactivated vaccine 6 months earlier. CLINICAL TRIALS REGISTRATION: NCT05057182.


Assuntos
Vacina BNT162 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunogenicidade da Vacina , RNA Mensageiro , SARS-CoV-2 , Vacinas de Produtos Inativados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa