Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2313596120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285948

RESUMO

Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.


Assuntos
Interneurônios , Protocaderinas , Camundongos , Animais , Humanos , Interneurônios/fisiologia , Neurônios/metabolismo , Apoptose/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Córtex Cerebral/fisiologia
3.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778455

RESUMO

Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Previously, we showed that loss of clustered gamma protocadherins (Pcdhγ), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Here we show that the sole deletion of the Pcdhγc4 isoform, but not of the other 21 isoforms in the Pcdhγ gene cluster, increased cIN cell death in mice during the normal period of programmed cell death. Viral expression of the Pcdhγc4 isoform rescued transplanted cINs lacking Pcdhγ from cell death. We conclude that Pcdhγ, specifically Pcdhγc4, plays a critical role in regulating the survival of cINs during their normal period of cell death. This demonstrates a novel specificity in the role of Pcdhγ isoforms in cortical development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa