Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000523

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Assuntos
Glicocálix/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Evasão Tumoral/fisiologia , Animais , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glicocálix/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Células NIH 3T3 , Neoplasias/genética , Neoplasias/mortalidade , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Evasão Tumoral/genética
2.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563529

RESUMO

Self-assembling nanoparticles (SANPs) promise an effective delivery of bisphosphonates or microRNAs in the treatment of glioblastoma (GBM) and are obtained through the sequential mixing of four components immediately before use. The self-assembling approach facilitates technology transfer, but the complexity of the SANP preparation protocol raises significant concerns in the clinical setting due to the high risk of human errors during the procedure. In this work, it was hypothesized that the SANP preparation protocol could be simplified by using freeze-dried formulations. An in-depth thermodynamic study was conducted on solutions of different cryoprotectants, namely sucrose, mannitol and trehalose, to test their ability to stabilize the produced SANPs. In addition, the ability of SANPs to deliver drugs after lyophilization was assessed on selected formulations encapsulating zoledronic acid in vitro in the T98G GBM cell line and in vivo in an orthotopic mouse model. Results showed that, after lyophilization optimization, freeze-dried SANPs encapsulating zoledronic acid could retain their delivery ability, showing a significant inhibition of T98G cell growth both in vitro and in vivo. Overall, these results suggest that freeze-drying may help boost the industrial development of SANPs for the delivery of drugs to the brain.


Assuntos
Glioblastoma , Nanopartículas , Animais , Difosfonatos/farmacologia , Liofilização , Glioblastoma/tratamento farmacológico , Camundongos , Sacarose , Trealose , Ácido Zoledrônico
3.
J Hepatol ; 75(2): 351-362, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33741397

RESUMO

BACKGROUND & AIMS: About 15% of intrahepatic cholangiocarcinomas (iCCAs) express fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs), usually alongside mutational inactivation of TP53, CDKN2A or BAP1. In FFs, FGFR2 residues 1-768 fuse to sequences encoded by a diverse array of partner genes (>60) causing oncogenic FF activation. While FGFR-specific tyrosine kinase inhibitors (F-TKI) provide clinical benefit in FF+ iCCA, responses are partial and/or limited by resistance mechanisms, such as the V565F substitution in the FGFR2 gatekeeper residue. Improving on FF targeting in iCCA therefore remains a critical unmet need. Herein, we aimed to generate a murine model of FF-driven iCCA and use this to uncover actionable FF-associated dependencies. METHODS: Four iCCA FFs carrying different fusion sequences were expressed in Tp53-/- mouse liver organoids. Tumorigenic properties of genetically modified liver organoids were assessed by transplantation into immuno-deficient mice. Cellular models derived from neoplastic lesions were exploited for pre-clinical studies. RESULTS: Transplantation of FF-expressing liver organoids yielded tumors diagnosed as CCA based on histological, phenotypic and transcriptomic analyses. The penetrance of this tumorigenic phenotype was influenced by FF identity. Tumor organoids and 2D cell lines derived from CCA lesions were addicted to FF signaling via Ras-Erk, regardless of FF identity or V565F mutation. Dual blockade of FF and the Ras-Erk pathway by concomitant pharmacological inhibition of FFs and Mek1/2 provided greater therapeutic efficacy than single agent F-TKI in vitro and in vivo. CONCLUSIONS: FF-driven iCCA pathogenesis was successfully modeled on a Tp53-/- murine background, revealing biological heterogeneity among structurally different FFs. Double blockade of FF-ERK signaling deserves consideration for precision-based approaches against human FF+ iCCA. LAY SUMMARY: Intrahepatic cholangiocarcinoma (iCCA) is a rare cancer that is difficult to treat. A subtype of iCCA is caused by genomic alterations that generate oncogenic drivers known as FGFR2 fusions. Patients with FGFR2 fusions respond to FGFR inhibitors, but clinical responses are often of modest duration. We used animal and cellular models to show that FGFR2 fusions require the activity of a downstream effector named Mek1/2. We found that dual blockade of FGFR2 fusions and Mek1/2 was more effective than isolated inhibition of FGFR2 fusions, pointing to the potential clinical utility of dual FGFR2-MEK1/2 blockade in patients with iCCA.


Assuntos
Colangiocarcinoma/etiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Proteína Supressora de Tumor p53/efeitos dos fármacos , Análise de Variância , Animais , Linhagem Celular/metabolismo , Colangiocarcinoma/genética , Modelos Animais de Doenças , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Nucleic Acids Res ; 47(7): 3365-3382, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698737

RESUMO

The telomeric protein TRF2 is overexpressed in several human malignancies and contributes to tumorigenesis even though the molecular mechanism is not completely understood. By using a high-throughput approach based on the multiplexed Luminex X-MAP technology, we demonstrated that TRF2 dramatically affects VEGF-A level in the secretome of cancer cells, promoting endothelial cell-differentiation and angiogenesis. The pro-angiogenic effect of TRF2 is independent from its role in telomere capping. Instead, TRF2 binding to a distal regulatory element promotes the expression of SULF2, an endoglucosamine-6-sulfatase that impairs the VEGF-A association to the plasma membrane by inducing post-synthetic modification of heparan sulfate proteoglycans (HSPGs). Finally, we addressed the clinical relevance of our findings showing that TRF2/SULF2 expression is a worse prognostic biomarker in colorectal cancer (CRC) patients.


Assuntos
Neoplasias do Colo/metabolismo , Sulfotransferases/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Neovascularização Patológica , Sulfatases , Sulfotransferases/biossíntese , Proteína 2 de Ligação a Repetições Teloméricas/deficiência , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Hepatology ; 69(1): 131-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067876

RESUMO

About 15% of intrahepatic cholangiocarcinomas (ICCs) express constitutively active fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs) generated by chromosomal translocations. FFs have been nominated as oncogenic drivers because administration of FGFR tyrosine kinase inhibitors (F-TKIs) can elicit meaningful objective clinical responses in patients carrying FF-positive ICC. Thus, optimization of FF targeting is a pressing clinical need. Herein, we report that three different FFs, previously isolated from ICC samples, are heat shock protein 90 (HSP90) clients and undergo rapid degradation upon HSP90 pharmacological blockade by the clinically advanced HSP90 inhibitor ganetespib. Combining catalytic suppression by the F-TKI BGJ398 with HSP90 blockade by ganetespib suppressed FGFR2-TACC3 (transforming acidic coiled-coil containing protein 3) signaling in cultured cells more effectively than either BGJ398 or ganetespib in isolation. The BGJ398 + ganetespib combo was also superior to single agents when tested in mice carrying subcutaneous tumors generated by transplantation of FGFR2-TACC3 NIH3T3 transformants. Of note, FF mutants known to enforce clinical resistance to BGJ398 in ICC patients retained full sensitivity to ganetespib in cultured cells. Conclusion: Our data provide a proof of principle that upfront treatment with the BGJ398 + ganetespib combo improves therapeutic targeting of FGFR2 fusions in an experimental setting, which may be relevant to precision medicine approaches to FF-driven ICC.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Compostos de Fenilureia/administração & dosagem , Pirimidinas/administração & dosagem , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Triazóis/administração & dosagem , Animais , Células Cultivadas , Combinação de Medicamentos , Feminino , Humanos , Camundongos
6.
Nucleic Acids Res ; 44(4): 1579-90, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511095

RESUMO

Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.


Assuntos
Antígenos CD/genética , Quadruplex G , Glicoproteínas/genética , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Peptídeos/genética , Antígeno AC133 , Antígenos CD/química , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/química , Humanos , Células-Tronco Neoplásicas/patologia , Peptídeos/química , Biossíntese de Proteínas
7.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1362-1370, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27838395

RESUMO

BACKGROUND: During the last decade, guanine G-rich sequences folding into G-quadruplex (G4) structures have received a lot of attention and their biological role is now a matter of large debate. Rising amounts of experimental evidence have validated several G-rich motifs as molecular targets in cancer treatment. Despite that an increasing number of small molecules has been reported to possess excellent G4 stabilizing properties, none of them has progressed through the drug-development pipeline due to their poor drug-like properties. In this context, the identification of G4 ligands with more favorable pharmacological properties and with a well-defined target activity could be fruitful for anticancer therapy application. SCOPE OF REVIEW: This manuscript outlines the current state of knowledge regarding EMICORON, a G4-interactive molecule structurally and biologically similar, on the one side, to coronene and, on the other side, to a bay-monosubstituted perylene. MAJOR CONCLUSIONS: Overall this work evidences that EMICORON, a new promising G4 ligand, possesses a marked antitumoral activity both standing alone and in combination with chemotherapeutics. Moreover, EMICORON represents a good example of multimodal class of antitumoral drug, able to simultaneously affect multiple targets participating in several distinct signaling pathways, thus simplifying the treatment modalities and improving the selectivity against cancer cells. GENERAL SIGNIFICANCE: Due to the importance of G4 forming sequences in crucial biological processes participating in tumor progression, their successful targeting with small molecules could represent a very important innovation in the development of effective therapeutic strategies against cancer. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Guanosina/metabolismo , Imidas/farmacologia , Neoplasias/tratamento farmacológico , Piperidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Guanosina/química , Humanos , Imidas/síntese química , Imidas/metabolismo , Ligantes , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Piperidinas/síntese química , Piperidinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Telômero/química , Telômero/efeitos dos fármacos , Telômero/metabolismo , Carga Tumoral/efeitos dos fármacos
8.
Nucleic Acids Res ; 43(3): 1759-69, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25618850

RESUMO

Here, with the aim of obtaining insight into the intriguing selectivity of G-quadruplex (G4) ligands toward cancer compared to normal cells, a genetically controlled system of progressive transformation in human BJ fibroblasts was analyzed. Among the different comparative evaluations, we found a progressive increase of DNA damage response (DDR) markers throughout the genome from normal toward immortalized and transformed cells. More interestingly, sensitivity to G4 ligands strongly correlated with the presence of a basal level of DNA damage, including at the telomeres, where the chromosome ends were exposed to the DDR without concurrent induction of DNA repair activity, as revealed by the lack of 53BP1 recruitment and telomere aberrations. The link between telomere uncapping and the response to G4 stabilization was directly assessed by showing that a partial TRF2 depletion, causing a basal level of telomere localized DDR, rendered telomerized fibroblasts prone to G4-induced telomere damage and anti-proliferative defects. Taken together these data strongly indicate that the presence of a basal level of telomere-associated DDR is a determinant of susceptibility to G4 stabilization.


Assuntos
Dano ao DNA , Quadruplex G/efeitos dos fármacos , Neoplasias/genética , Telômero , Western Blotting , Imunoprecipitação da Cromatina , Humanos , Hibridização in Situ Fluorescente , Células Tumorais Cultivadas
9.
Nucleic Acids Res ; 42(5): 2945-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335081

RESUMO

Tumor angiogenesis is mainly mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic factor produced by cancer cells and active on the endothelium through the VEGF receptor 2 (VEGFR-2). Here we identify a G-rich sequence within the proximal promoter region of vegfr-2, able to form an antiparallel G-quadruplex (G4) structure. This G4 structure can be efficiently stabilized by small molecules with the consequent inhibition of vegfr-2 expression. Functionally, the G4-mediated reduction of VEGFR-2 protein causes a switching off of signaling components that, converging on actin cytoskeleton, regulate the cellular events leading to endothelial cell proliferation, migration and differentiation. As a result of endothelial cell function impairment, angiogenic process is strongly inhibited by G4 ligands both in vitro and in vivo. Interestingly, the G4-mediated antiangiogenic effect seems to recapitulate that observed by using a specific interference RNA against vegfr-2, and it is strongly antagonized by overexpressing the vegfr-2 gene. In conclusion, we describe the evidence for the existence of G4 in the promoter of vegfr-2, whose expression and function can be markedly inhibited by G4 ligands, thereby revealing a new, and so far undescribed, way to block VEGFR-2 as target for anticancer therapy.


Assuntos
Quadruplex G , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Regiões Promotoras Genéticas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Cancer Cell ; 10(6): 473-86, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17157788

RESUMO

Che-1 is a RNA polymerase II-binding protein involved in the transcription of E2F target genes and induction of cell proliferation. Here we show that Che-1 contributes to DNA damage response and that its depletion sensitizes cells to anticancer agents. The checkpoint kinases ATM/ATR and Chk2 interact with Che-1 and promote its phosphorylation and accumulation in response to DNA damage. These Che-1 modifications induce a specific recruitment of Che-1 on the TP53 and p21 promoters. Interestingly, it has a profound effect on the basal expression of p53, which is preserved following DNA damage. Notably, Che-1 contributes to the maintenance of the G2/M checkpoint induced by DNA damage. These findings identify a mechanism by which checkpoint kinases regulate responses to DNA damage.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Genes p53 , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Divisão Celular , Quinase do Ponto de Checagem 2 , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Fase G2 , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Regiões Promotoras Genéticas , Transcrição Gênica
11.
Mol Ther Nucleic Acids ; 33: 127-141, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449042

RESUMO

Nanodiamonds are innovative nanocrystalline carbon particles able to deliver chemically conjugated miRNAs. In oncology, the use of miRNA-based therapies may represent an advantage, based on their ability to simultaneously target multiple intracellular oncogenic targets. Here, nanodiamonds were tested and optimized to deliver miR-34a, a miRNA playing a key role in inhibiting tumor development and progression in many cancers. The physical-chemical properties of nanodiamonds were investigated suggesting electrical stability and uniformity of structure and size. Moreover, we evaluated nanodiamond cytotoxicity on two breast cancer cell models and confirmed their excellent biocompatibility. Subsequently, nanodiamonds were conjugated with miR-34a, using the chemical crosslinker polyethyleneimine; real-time PCR analysis revealed a higher level of miR-34a in cancer cells treated with the different formulations of nanodiamonds than with commercial transfectant. A significant and early nanodiamond-miR-34a uptake was recorded by FACS and fluorescence microscopy analysis in MCF7 and MDA-MB-231 cells. Moreover, nanodiamond-miR-34a significantly inhibited both cell proliferation and migration. Finally, a remarkable anti-tumor effect of miR-34a-conjugated nanodiamonds was observed in both heterotopic and orthotopic murine xenograft models. In conclusion, this study provides a rationale for the development of new therapeutic strategies based on use of miR-34a delivered by nanodiamonds to improve the clinical treatment of neoplasms.

12.
EMBO Mol Med ; 15(1): e16033, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36426578

RESUMO

The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge. Here, we developed a miRNA-based approach to reduce TRF2 expression. By performing a high-throughput luciferase screening of 54 candidate miRNAs, we identified miR-182-3p as a specific and efficient post-transcriptional regulator of TRF2. Ectopic expression of miR-182-3p drastically reduced TRF2 protein levels in a panel of telomerase- or alternative lengthening of telomeres (ALT)-positive cancer cell lines. Moreover, miR-182-3p induced DNA damage at telomeric and pericentromeric sites, eventually leading to strong apoptosis activation. We also observed that treatment with lipid nanoparticles (LNPs) containing miR-182-3p impaired tumor growth in triple-negative breast cancer (TNBC) models, including patient-derived tumor xenografts (PDTXs), without affecting mouse survival or tissue function. Finally, LNPs-miR-182-3p were able to cross the blood-brain barrier and reduce intracranial tumors representing a possible therapeutic option for metastatic brain lesions.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Telômero/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
13.
EMBO Mol Med ; 14(3): e14501, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107878

RESUMO

The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication-associated DNA damage and genomic instability, a signature of BRCA1/2-mutated tumours. Targeted therapies against BRCA1/2-mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue. Ligands that bind and stabilise G-quadruplexes (G4s) have recently emerged as a class of compounds that selectively eliminate the cells and tumours lacking BRCA1 or BRCA2. Pyridostatin is a small molecule that binds G4s and is specifically toxic to BRCA1/2-deficient cells in vitro. However, its in vivo potential has not yet been evaluated. Here, we demonstrate that pyridostatin exhibits a high specific activity against BRCA1/2-deficient tumours, including patient-derived xenograft tumours that have acquired PARP inhibitor (PARPi) resistance. Mechanistically, we demonstrate that pyridostatin disrupts replication leading to DNA double-stranded breaks (DSBs) that can be repaired in the absence of BRCA1/2 by canonical non-homologous end joining (C-NHEJ). Consistent with this, chemical inhibitors of DNA-PKcs, a core component of C-NHEJ kinase activity, act synergistically with pyridostatin in eliminating BRCA1/2-deficient cells and tumours. Furthermore, we demonstrate that pyridostatin triggers cGAS/STING-dependent innate immune responses when BRCA1 or BRCA2 is abrogated. Paclitaxel, a drug routinely used in cancer chemotherapy, potentiates the in vivo toxicity of pyridostatin. Overall, our results demonstrate that pyridostatin is a compound suitable for further therapeutic development, alone or in combination with paclitaxel and DNA-PKcs inhibitors, for the benefit of cancer patients carrying BRCA1/2 mutations.


Assuntos
Quadruplex G , Neoplasias , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2 , Reparo do DNA , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Ácidos Picolínicos
14.
J Cell Mol Med ; 15(2): 316-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20015197

RESUMO

Despite the low efficacy of conventional antitumour drugs, chemotherapy remains an essential tool in controlling advanced gastric and oesophageal cancers. We aimed to provide a biological rationale based on the sorafenib-taxotere interaction for the clinical treatment of gastric cancer. In vitro experiments were performed on four human gastric cancer cell lines (GK2, AKG, KKP and NCI-N87). Cytotoxicity was evaluated by sulforhodamine B (SRB) assay, cell cycle perturbations, apoptosis and mitotic catastrophe were assessed by flow cytometric and microscopic analyses, and protein expression was studied by Western blot. In the in vivo experiments, nude mice xenografted with the most resistant line were treated with sorafenib and docetaxel singly or in association. Sorafenib inhibited cell growth (IG(50) values ranged from 3.4 to 8.1 µM) and caused down-regulation of MAP-K/ERK phosphorylation and of mcl-1 and p-bad expression after a 48-hr exposure. Apoptosis induction was associated with caspase-3 and -9 activation and mitochondrial membrane depolarization. The drug combination enhanced apoptosis (up to 80%) and produced a synergistic interaction when low doses of the taxane preceded administration of the antityrosine kinase. This synergism was probably due to the induction of an anomalous multidiploid G0-G1 peak and to consequent mitotic catastrophe, which increased sensitivity to sorafenib. Consistent with in vitro results, the docetaxel-sorafenib sequence exhibited high therapeutic efficacy in NCI-N87 mouse xenografts producing tumour weight inhibition (> 65%), tumour growth delay (up to 25 days) and increased mouse survival (30%). Our findings suggest the potential clinical usefulness of treatment with sorafenib and docetaxel for advanced gastric cancer.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzenossulfonatos/administração & dosagem , Piridinas/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Taxoides/administração & dosagem , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Sinergismo Farmacológico , Humanos , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitose/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Niacinamida/análogos & derivados , Compostos de Fenilureia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Piridinas/farmacologia , Piridinas/uso terapêutico , Rodaminas , Sorafenibe , Taxoides/farmacologia , Taxoides/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Transl Med ; 9: 125, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21798045

RESUMO

BACKGROUND: Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139) as well as the efficacy of combination chemotherapy in human melanoma xenografts. METHODS: Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP) followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. RESULTS: The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50%) accompanied by a marked tumor re-growth delay (TRD, about 20 days). The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. CONCLUSIONS: These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.


Assuntos
Antineoplásicos/uso terapêutico , Eletroporação/métodos , Melanoma/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Tionucleotídeos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Terapia Combinada , Regulação para Baixo/efeitos dos fármacos , Eletrodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tionucleotídeos/farmacologia , Resultado do Tratamento
16.
Nucleic Acids Res ; 37(16): 5353-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596811

RESUMO

Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.


Assuntos
Acridinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Telômero/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Humanos , Ligantes , Transdução de Sinais , Telômero/química , Telômero/metabolismo
17.
Nanomedicine ; 7(6): 955-64, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21453789

RESUMO

Zoledronic acid (ZOL) is a potent amino-bisphosphonate used for the treatment of bone metastases with recently reported antitumor activity. However, the short plasma half-life and rapid accumulation in bone limits the use of ZOL as an antitumor agent in extraskeletal tissues. Therefore, we developed stealth liposomes encapsulating ZOL (LipoZOL) to increase extraskeletal drug availability. Compared to free ZOL, LipoZOL induced a stronger inhibition of growth of a range of different cancer cell lines in vitro. LipoZOL also caused significantly larger inhibition of tumor growth and increased the overall survival in murine models of human prostate cancer and multiple myeloma, in comparison with ZOL. Moreover, a strong inhibition of vasculogenetic events without evidence of necrosis in the tumor xenografts from prostate cancer was recorded after treatment with LipoZOL. We demonstrated both antitumor activity and tolerability of LipoZOL in preclinical animal models of both solid and hematopoietic malignancies, providing a rationale for early exploration of use of LipoZOL as a potential anticancer agent in cancer patients. FROM THE CLINICAL EDITOR: The short plasma half-life and rapid accumulation in bone limits the use of zoledronic acid as an antitumor agent in extraskeletal tissues. Therefore, stealth liposomes encapsulating ZOL (LipoZOL) have been developed to increase extraskeletal drug availability.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Imidazóis/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Conservadores da Densidade Óssea/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos/química , Masculino , Camundongos , Camundongos Nus , Mieloma Múltiplo/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias da Próstata/patologia , Ácido Zoledrônico
18.
J Exp Clin Cancer Res ; 40(1): 364, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784956

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC. METHODS: The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. RESULTS: TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation. CONCLUSIONS: Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Epigênese Genética/genética , Neoplasias Hepáticas/tratamento farmacológico , Morfolinas/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Morfolinas/farmacologia , Sorafenibe/farmacologia
19.
Mol Cancer ; 9: 207, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20684763

RESUMO

BACKGROUND: Cathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L) and aspartyl-proteases (e.g. cathepsin D), normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness. RESULTS: In the present work we first evaluated, by in vitro procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i) cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii) CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, in vivo studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases. CONCLUSIONS: These results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological) as innovative strategy in the management of metastatic melanoma disease.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Melanoma/patologia , Metástase Neoplásica/prevenção & controle , Animais , Sequência de Bases , Catepsina B/genética , Linhagem Celular Tumoral , Primers do DNA , Inativação Gênica , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Clin Invest ; 117(11): 3236-47, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17932567

RESUMO

Functional telomeres are required for the replicability of cancer cells. The G-rich strand of telomeric DNA can fold into a 4-stranded structure known as the G-quadruplex (G4), whose stabilization alters telomere function limiting cancer cell growth. Therefore, the G4 ligand RHPS4 may possess antitumor activity. Here, we show that RHPS4 triggers a rapid and potent DNA damage response at telomeres in human transformed fibroblasts and melanoma cells, characterized by the formation of several telomeric foci containing phosphorylated DNA damage response factors gamma-H2AX, RAD17, and 53BP1. This was dependent on DNA repair enzyme ATR, correlated with delocalization of the protective telomeric DNA-binding protein POT1, and was antagonized by overexpression of POT1 or TRF2. In mice, RHPS4 exerted its antitumor effect on xenografts of human tumor cells of different histotype by telomere injury and tumor cell apoptosis. Tumor inhibition was accompanied by a strong DNA damage response, and tumors overexpressing POT1 or TRF2 were resistant to RHPS4 treatment. These data provide evidence that RHPS4 is a telomere damage inducer and that telomere disruption selectively triggered in malignant cells results in a high therapeutic index in mice. They also define a functional link between telomere damage and antitumor activity and reveal the key role of telomere-protective factors TRF2 and POT1 in response to this anti-telomere strategy.


Assuntos
Acridinas/metabolismo , Antineoplásicos/metabolismo , Dano ao DNA , Quadruplex G , Telômero/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , DNA/química , DNA/genética , DNA/metabolismo , Reparo do DNA , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Transplante de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transplante Heterólogo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa