Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 63(26): 12207-12217, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888279

RESUMO

Reactions between tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2 1 and sulfur containing small molecules are reported. Complex 1 reacts with CS2 to produce intermediate η2 bound CS2 complex [O2C(tBuC═)W(η2-(S,C)-CS2)(THF)] 8. Heating complex 8 provides a mixture of a monomeric tungsten sulfido complex 9 and a dimeric complex 10 in a 4:1 ratio, respectively. Heating the mixture does not perturb the ratio. Addition of excess THF in a solution of 9 and 10 (4:1) converts 10 to 9 (>96%) with concomitant loss of (CS)x. Both 9 and 10 can be selectively crystallized from the mixture. An alternative synthesis of exclusively monomeric 9 involves the reaction between 1 and PhNCS. Demonstrating ring expansion metathesis polymerization (REMP), tethered tungsten alkylidene 8 polymerizes norbornene to produce cis-selective syndiotactic cyclic polynorbornene (c-poly(NBE)).

2.
Angew Chem Int Ed Engl ; 63(8): e202318956, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38109203

RESUMO

Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2 -C,C-(Me3 SiC3 SiMe3 )}] (2-M) (BDI=[ArNC(CH3 )]2 CH- , Ar=2,6-i Pr2 C6 H3 ; M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2 ] (1-M, M=Ti, V) with 1,3-dilithioallene [Li2 (Me3 SiC3 SiMe3 )]. Complexes 2-M have been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size-exclusion chromatography (SEC) and intrinsic viscosity studies. Two-electron oxidation of 2-V with nitrous oxide (N2 O) cleanly yields a [VV ] alkylidene-alkynyl oxo complex [(BDI)V(=O){κ1 -C-(=C(SiMe3 )CC(SiMe3 ))}] (3), which lends support for how this scaffold in 2-M might be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3-dianionic allene as a segue into M-C multiple bonds.

3.
J Am Chem Soc ; 145(41): 22796-22802, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812163

RESUMO

The synthesis, characterization, and preliminary activity of an unprecedented tethered alkylidyne tungsten complex for ring expansion alkyne metathesis polymerization (REAMP) are reported. The tethered alkylidyne 7 is generated rapidly by combining alkylidyne W(CtBu)(CH2tBu)(O-2,6-i-Pr2C6H3)2 (6) with 1 equiv of an yne-ol proligand (5). Characterized by NMR studies and nuclear Overhauser effect spectroscopy, complex 7 is a dimer. Each metal center contains a tungsten-carbon triple bond tethered to the metal center via an alkoxide ligand. The polymerization of the strained cycloalkyne 3,8-didodecyloxy-5,6-dihydro-11,12-didehydrodibenzo[a,e]-[8]annulene, 8, to generate cyclic polymers was demonstrated. Size exclusion chromatography (SEC) and intrinsic viscosity (η) measurements confirm the polymer's cyclic topology.

4.
J Am Chem Soc ; 143(41): 17276-17283, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618432

RESUMO

This work outlines an approach to creating a catalyst for cyclic polymer synthesis using readily available materials in only one or two steps. Combining commercially available molybdenum-alkylidene 1 with two equivalents of ene-ol proligand 2 rapidly produces, in quantitative yield (1H NMR spectroscopy), the double tethered metallacyclobutane complex 3. Characterized by variable temperature NMR studies and nuclear Overhauser effect spectroscopy (NOESY) experiments, complex 3 exhibits fluxional behavior in solution. Determined by single crystal X-ray diffraction, the solid-state structure of complex 3 reveals metrical parameters indicating that the metallacyclobutane is not predicted to undergo rapid retro-cycloaddition. However, complex 3 is a precatalyst for the polymerization of norbornene to produce cyclic polynorbornene. An NMR spectrum of a test polymerization indicates that only a small fraction of the precatalyst is activated upon exposure to monomer. Quantifying the active catalyst is possible by measuring vinyl resonances that appear in the 1H NMR spectrum. The vinyl resonances are attributable to the release of one of the tethers upon norbornene addition. Confirmation of the polymer cyclic topology comes from gel permeation chromatography (GPC), dynamic light scattering (DLS), and intrinsic viscosity (η) measurements. The double tethered metallacyclobutane complex is a novel design for catalytic cyclic polymer synthesis. The synthetic approach suggests that catalyst tuning is possible by a choice of the commercial alkylidene and alteration of the ene-ol proligand.


Assuntos
Norbornanos
5.
J Am Chem Soc ; 143(2): 1235-1246, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33417768

RESUMO

This report describes an approach for preparing tethered tungsten-imido alkylidene complexes featuring a tetra-anionic pincer ligand. Treating the tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2 (1) with isocyanates (RNCO; R = tBu, Cy, and Ph) leads to cycloaddition occurring exclusively at the C═N bond to generate the tethered tungsten-imido alkylidenes (6-NR). Unanticipated intermediates reveal themselves, including the discovery of [(O2CtBuC═)W(η2-(N,C)-RNCO)(THF)] (11-R) and an unprecedented decarbonylation product [(tBuOCO)W(≡NR)(tBuCCO)] (14-R), on the pathway to the formation of 6-NR. Complex 11-R is kinetically stable for sterically bulky isocyanate R = tBu (11-tBu) and is isolated and characterized by single-crystal X-ray diffraction. Finally, adding to the short list of catalysts capable of ring expansion metathesis polymerization (REMP), complexes 6-NR and 11-tBu are active for the stereoselective synthesis of cyclic polynorbornene.


Assuntos
Alcenos/química , Complexos de Coordenação/química , Plásticos/síntese química , Tungstênio/química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Plásticos/química , Estereoisomerismo
7.
ACS Nano ; 18(18): 11655-11664, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652866

RESUMO

Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.

8.
Energy Fuels ; 38(17): 16473-16489, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39257465

RESUMO

Bio-oils contain a substantial number of highly oxygenated hydrocarbons, which often exhibit low thermal stability during storage, handling, and refining. The primary objectives of this study are to characterize the hydroxyl group in bio-oil fractions and to investigate the relationship between the type of hydroxyl group and accelerated aging behavior. A bio-oil was fractionated into five solubility-based fractions, classified in two main groups: water-soluble and water-insoluble fractions. These fractions were then subjected to chemoselective reactions to tag molecules containing hydroxyl groups and analyzed by negative-ion electrospray ionization 21 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The fractions were also subjected to accelerated aging experiments and characterized by FT-ICR MS and bulk viscosity measurements. Extracting insightful information from ultrahigh-resolution data to aid in predicting upgrading methodologies and instability behaviors of bio-oils is challenging due to the complexity of the data. To address this, an unsupervised learning technique, k-means clustering analysis, was used to semiquantify molecular compositions with a close Euclidean distance within the (O/C, H/C) chemical space. The combination of k-means analysis with findings from chemoselective reactions allowed the distinctive hydroxyl functionalities across the samples to be inferred. Our results indicate that the hexane-soluble fraction contained numerous molecules containing primary and secondary alcohols, while the water-soluble fraction displayed diverse groups of oxygenated compounds, clustered near to carbohydrate-like and pyrolytic humin-like materials. Despite its high oxygen content, the water-soluble fraction showed minimal changes in viscosity during aging. In contrast, a significant increase in viscosity was observed in the water-insoluble materials, specifically, the low- and high-molecular-weight lignin fractions (LMWL and HMWL, respectively). Among these two fractions, the HMWL exhibited the highest increase in viscosity after only 4 h of accelerated aging. Our results indicate that this aging behavior is attributed to an increased number of molecular compositions containing phenolic groups. Thus, the chemical compositions within the HMWL are the major contributors to the viscosity changes in the bio-oil under accelerated aging conditions. This highlights the crucial role of oxygen functionality in bio-oil aging, suggesting that a high oxygen content alone does not necessarily correlate with an increase of viscosity. Unlike other bio-oil categorization methods based on constrained molecule locations within the van Krevelen compositional space, k-means clustering can identify patterns within ultrahigh-resolution data inherent to the unique chemical fingerprint of each sample.

9.
Chem Commun (Camb) ; 59(94): 13993-13996, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938062

RESUMO

Tacticity is critical to polymer properties. The influence of solvent on tacticity in the catalytic synthesis of cyclic polynorbornene (c-PNB) is reported. In toluene cis,syndiotactic c-PNB forms; in THF, cis,syn/iso c-PNB forms.

10.
ACS Omega ; 7(1): 786-792, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036745

RESUMO

Organic-inorganic hybrid materials are a promising class of materials for tissue engineering and other biomedical applications. In this systematic study, the effect of the polymer molecular mass (MM) with a linear architecture on hybrid mechanical properties is reported. Well-defined linear poly(methyl methacrylate-co-(3-(trimethoxysilyl)propyl methacrylate)) polymers with a range of MMs of 9 to 90 kDa and one 90 kDa star-shaped polymer were synthesized and then used to form glass-polymer hybrids. It was demonstrated that increasing linear polymer MM decreases the resultant hybrid mechanical strength. Furthermore, a star-polymer hybrid was synthesized as a comparison and demonstrated significantly different mechanical properties relative to its linear-polymer counterpart.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa