Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 5, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407120

RESUMO

BACKGROUND: During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. RESULTS: The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. CONCLUSION: An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research.


Assuntos
Galectinas/administração & dosagem , Galectinas/genética , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Onchocerca/imunologia , Animais , Bovinos , Clonagem Molecular/métodos , Feminino , Galectinas/imunologia , Perfilação da Expressão Gênica , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Imunização , Leucócitos Mononucleares/parasitologia , Onchocerca/genética , Filogenia , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA
3.
Acta Trop ; 225: 106176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34627755

RESUMO

The expression of antigens in their immunologically-active form remains a challenge, both in the analysis of regulatory pathways exploited by parasitic nematodes or in the development of vaccines. Despite the success of native proteins to induce protective immunity, recombinant proteins expressed in bacteria, yeast or insect cells offer only limited protective capacities, presumably due to incorrect folding or missing complex posttranslational modifications. The present study investigates the feasibility of using the free-living nematode Caenorhabditis elegans as an alternative expression system for proteins found in the secretome of parasitic nematodes. Exemplified by the expression of the extracellular superoxide dismutase from Haemonchus contortus (HcSODe) and the extracellular and glycosylated glutathione S-transferase from the filarial parasite Onchocerca volvulus (OvGST1), we continue our efforts to improve production and purification of recombinant proteins expressed in C. elegans. We demonstrate that sufficient quantities of functional proteins can be expressed in C. elegans for subsequent immunological and biochemical studies.


Assuntos
Haemonchus , Nematoides , Onchocerca volvulus , Animais , Caenorhabditis elegans/genética , Haemonchus/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa